Molecular Biotechnology

, Volume 57, Issue 8, pp 709–719 | Cite as

Ampelometric Leaf Trait and SSR Loci Selection for a Multivariate Statistical Approach in Vitis vinifera L. Biodiversity Management

  • Vittorio Alba
  • Carlo Bergamini
  • Rosalinda Genghi
  • Marica Gasparro
  • Rocco Perniola
  • Donato AntonacciEmail author


High estimated heritability values were recently revealed for mature leaf traits in grape (Vitis vinifera L.), thus redeeming ampelography in the era of molecular markers. The “Organisation Internationale de la Vigne et du Vin (OIV)” set a list of hundreds of descriptors for grapevine in order to standardize ampelographic and ampelometric scores. Therefore, the selection and reduction of the number of OIV codes can represent a major goal for leaner biodiversity assessment studies. The identification of ampelometric traits associated with grape diversity allows to construct Classification Trees with chi squared automatic interaction detection (CHAID) algorithm, a stepwise model-fitting method that produces a tree diagram in which at each step the sample pool is splitted based on the independent variables statistically different for the dependent variable. A collection of 100 table and wine grapevines (Vitis vinifera L.) was characterized and evaluated by means of six microsatellites and twenty-two ampelometric traits on mature leaves. Nine ampelometric traits were selected by principal component analysis and employed to build the classification trees based on CHAID algorithm. The strategy can represent an effective tool for grape biodiversity management, right allocations, and identification of new grape genotypes, implemented by a further microsatellite investigation only when unsolved cases occur, allowing faster and cheaper results.


Ampelometry SSR Trait selection CHAID Grape biodiversity 

Supplementary material

12033_2015_9862_MOESM1_ESM.xls (113 kb)
Supplementary material 1 (XLS 113 kb)


  1. 1.
    Sefc, K. M., Lefort, F., Grando, M. S., Scott, K., Steinkellner, H., & Thomas, M. R. (2001). Microsatellite markers for grapevine: a state of the art. In K. A. Roubelakis-Angelakis (Ed.), Molecular biology and biotechnology of grapevine (pp. 407–438). Amsterdam: Kluwer Publishers.Google Scholar
  2. 2.
    Chitwood, D. H., et al. (2014). A modern ampelography: a genetic basis for leaf shape and venation patterning in grape. Plant Physiology, 164, 259–272.CrossRefGoogle Scholar
  3. 3.
    OIV (2009). Second edition of the OIV descriptor list for grape varieties and Vitis species. Organisation Internationale de la Vigne et du Vin, Paris, France - International Plant Genetic Resources Institute, Rome (
  4. 4.
    Santiago, J. L., Boso, S., Martin, J. P., Ortiz, J. M., & Martinez, M. C. (2005). Characterization and identification of grapevine cultivars (Vitis vinifera L.) from Northwestern Spain using microsatellite markers and ampelometric methods. Vitis, 44(2), 67–72.Google Scholar
  5. 5.
    Preiner, D., Safner, T., Karoglan Kontić, J., Marković, Z., Šimon, S., & Maletić, E. (2014). Analysis of phyllometric parameters efficiency in discrimination of Croatian native V. vinifera cultivars. Vitis, 53(4), 215–217.Google Scholar
  6. 6.
    Galet, P. (1988). Cépages et vignobles de Frances (pp. 9–17). Montpellier: Dèhan.Google Scholar
  7. 7.
    Tomažič, I., & Korošec-Koruza, Z. (2003). Validity of phyllometric parameters used to differentiate local Vitis vinifera L. cultivars. Genetic Resources and Crop Evolution, 50, 773–778.CrossRefGoogle Scholar
  8. 8.
    Alba, V., Bergamini, C., Cardone, M. F., Gasparro, M., Perniola, R., Genghi, R., & Antonacci, D. (2014). Morphological variability in leaves and molecular characterization of novel table grape candidate cultivars (Vitis vinifera L.). Molecular Biotechnology, 54(3), 1021–1030.Google Scholar
  9. 9.
    Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Journal Applied Statistics, 29(2), 119–127.CrossRefGoogle Scholar
  10. 10.
    Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519–530.CrossRefGoogle Scholar
  11. 11.
    Doornik J.A., H. Hansen (1994). An omnibus test for univariate and multivariate normality. Working Paper, Nuffield College, University of Oxford.Google Scholar
  12. 12.
    Fernandez-Gonzalez, M., Mena, A., Izquierdo, P., & Martinez, J. (2007). Genetic characterization of grapevine (Vitis vinifera L.) cultivars from Castilla La Mancha (Spain) using microsatellite markers. Vitis, 46(3), 126–130.Google Scholar
  13. 13.
    Carimi, F., Mercati, F., Abbate, L., & Sunseri, F. (2010). Microsatellite analysis for evaluation of genetic diversity among Sicilian grapevine cultivars. Genetic Resources Crop Evolution, 57, 703–719.CrossRefGoogle Scholar
  14. 14.
    Cipriani, G., et al. (2010). The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theoretical Applied Genetics, 121(8), 1569–1585.CrossRefGoogle Scholar
  15. 15.
    Olmo, H. P. (1976). Grapes. In N. W. Simmonds (Ed.), Evolution of Crop Plants (pp. 294–298). London: Longman.Google Scholar
  16. 16.
    Ruffo Roberto S., A.M. de Assis, L.Y. Yamamoto, A.J. Sato, R. Koyama, W.S. Borges, W. Genta, W. Iwai (2013). “Black Star” and “Haruna”: new natural table grape mutations in Brazil. In: XIV Congreso Latinoamericano de Viticoltura y Enologia, 20 – 22 Noviembre, Tarija, Bolivia. Retrieved 10 Nov, 2014 from
  17. 17.
    Kobayashi, S., Goto-Yamamoto, N., & Hirochika, H. (2004). Retrotransposon-induced mutations in grape skin color. Science, 304, 982.CrossRefGoogle Scholar
  18. 18.
    Vouillamoz, J. F., & Arnold, C. (2009). Etude historico-génétique de l’origine du ‘Chasselas’. Revue suisse Viticulture Arboriculture Horticulture, 41(5), 299–307.Google Scholar
  19. 19.
    Meredith, C. P., Bowers, J. E., Riaz, S., Handley, V., Bandman, E. B., & Dangl, G. S. (1999). The identity and parentage of the variety known in California as Petite Sirah. American Journal Enology and Viticulture, 50, 236–242.Google Scholar
  20. 20.
    This, P., et al. (2004). Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theoretical Applied Genetics, 109, 1448–1458.CrossRefGoogle Scholar
  21. 21.
    Blaich, R., Konradi, J., Rühl, E., & Forneck, A. (2007). Assessing genetic variation among Pinot noir (Vitis vinifera L) clones with AFLP markers. American Journal Enology and Viticulture, 58(4), 526–529.Google Scholar
  22. 22.
    Stenkamp, S. H. G., Becker, M. S., Hill, B. H. E., Blaich, R., & Forneck, A. (2009). Clonal variation and stability assay of chimeric Pinot Meunier (Vitis vinifera L) and descending sports. Euphytica, 165, 197–209.CrossRefGoogle Scholar
  23. 23.
    Alba, V., Anaclerio, A., Gasparro, M., Caputo, A. R., Montemurro, C., Blanco, A., & Antonacci, D. (2011). Ampelographic and molecular characterization of Aglianico accessions (Vitis vinifera L.) collected in Southern-Italy. South African Journal Enology Viticulture, 32(2), 164–173.Google Scholar
  24. 24.
    Meneghetti, S., Costacurta, A., Bavaresco, L., & Calo’, A. (2013). Genetic variability and geographic typicality of Italian former Prosecco grape variety using PCR-derived molecular markers. Molecular Biotechnology, 56(5), 408–420.CrossRefGoogle Scholar
  25. 25.
    Naftulin, I. S., & Rebrova, O. Y. (2010). Application of C&RT, CHAID, C4.5 and Wizewhy algorithms for stroke type diagnosis. In L. Rutkowski (Ed.), ICAISC 2010. Part I, LNAI 6113 (pp. 651–656). Berlin Heidelberg: Springer.Google Scholar
  26. 26.
    Byrd, E. T., & Gustke, L. (2007). Using decision trees to identify tourism stakeholders: the case of two Eastern North Carolina counties. Tourism and Hospitality Research, 7(3–4), 176–193.CrossRefGoogle Scholar
  27. 27.
    Ehrler D. and T. Lehmann (2007). Responder profiling with CHAID and dependency analysis. Lehrstuhl fur Wirtschafts und Sozialstatistik Friederich—Schriller- Universitat Jena. Carl-Zeiss-Str. 3, 07743 Jena.Google Scholar
  28. 28.
    Driouchi A. and A. Baijou (2009). Interdependencies of health, education & poverty in Egypt, Morocco and Turkey using demographic and health survey. Munich Personal RePEc Archive (MPRA) No. 21409. Retrieved Nov 10, 2014 from
  29. 29.
    Podgorelec, V., Kokol, P., Stiglic, B., & Rozman, I. (2002). Decision trees: an overview and their use in medicine. Journal Medical Systems, 26(5), 445–463.CrossRefGoogle Scholar
  30. 30.
    Herrera, C. B., & Schubert, L. (2003). The estimation of biodiversity and the characterization of the dynamics: an application to the study of a pest. Revista De Matematica E Estatistica São Paulo, 21(3), 85–98.Google Scholar
  31. 31.
    Sowa, S. P., Gust, A., Morey, M. E., & Garringer, A. (2008). Improving Predicted Distribution Models for Riverine Species: An Example from Nebraska. Paper: Publications of the US Geological Survey. 27.Google Scholar
  32. 32.
    Tarkhnishvili, D., Serbinova, I., & Gavashelishvili, A. (2009). Modelling the range of Syrian spadefoot toad (Pelobates syriacus) with combination of GIS-based approaches. Amphibia-Reptilia, 30, 401–412.CrossRefGoogle Scholar
  33. 33.
    Pande, S., Pawashe, A., Mahajan, M. N., Mahabal, A., Yosef, R., & Dahanukar, N. (2011). Biometry based ageing of nestling Indian Spotted Owlets (Athene brama brama). ZooKeys, 132, 75–88.CrossRefGoogle Scholar
  34. 34.
    Antipov E., and E. Pokryshevskaya (2009) Applying CHAID for logistic regression diagnostics and classification accuracy improvement. Munich Personal RePEc Archive (MPRA) No. 21499.Retrieved Nov 10, 2014 from
  35. 35.
    Magidson J. (1993). SPSS for Windows CHAID Release 6.0, SPSS Inc., Chicago.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vittorio Alba
    • 1
  • Carlo Bergamini
    • 1
  • Rosalinda Genghi
    • 1
  • Marica Gasparro
    • 1
  • Rocco Perniola
    • 1
  • Donato Antonacci
    • 1
    Email author
  1. 1.Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia AgrariaUnità di ricerca per l’uva da tavola e la vitivinicoltura in ambiente mediterraneoTuriItaly

Personalised recommendations