Molecular Biotechnology

, Volume 57, Issue 6, pp 489–498 | Cite as

A Low-Affinity K+ Transporter AlHKT2;1 from Recretohalophyte Aeluropus lagopoides Confers Salt Tolerance in Yeast

  • Payal Sanadhya
  • Parinita Agarwal
  • Jackson Khedia
  • Pradeep K. Agarwal


The high-affinity potassium transporters (HKT) are highly important for stress tolerance in plants as they uniquely maintain K+/Na+ ratio for their survival and growth. In this study a novel HKT gene AlHKT2;1 was isolated and characterized from salt secreting halophyte, Aeluropus lagopoides. The AlHKT2;1 cDNA comprised of an open reading frame of 1,581 bp, encoding a protein of 526 amino acid residues. It belongs to class II HKTs and showed high homology with other HKT genes. Functional characterization of AlHKT2;1 in both K+ uptake‐deficient (WΔ6) and Na+-sensitive yeast mutants (G19) showed the characteristic feature of low-affinity K+ transporter supporting the growth at >1 mM KCl concentration. The transformed yeast cells showed high sensitivity to NaCl; however, the addition of KCl along with NaCl support the growth of AlHKT2;1 expressing mutant. Ion content analysis of yeast cells with AlHKT2;1 grown in high NaCl medium supplemented with KCl revealed that salt tolerance was correlated with accumulation of K+ during salt stress. These results suggest that AlHKT2;1 plays an important role in the K+ uptake during salt stress and in maintaining a high K+/Na+ ratio in the cytosol.


Aeluropus lagopoides HKT transporter Salt stress AlHKT2;1 S. cerevisiae 



CSIR-CSMCRI Communication No. 185 as provided by BDIM. We are grateful to Dr Alonso Rodriguez-Navarro, Universidad Politecnica de Madrid, Spain, for kindly providing us with the WΔ6, W303.1A and G19 yeast strains and for the helpful discussions. The financial assistance from CSIR (OLP 0067) is greatly acknowledged. PA is thankful for Sennior Research Associateship (CSIR Scientists’ Pool Scheme). PS and JK are thankful to CSIR for Senior Research Fellowship and Junior Research Fellowship, respectively and AcSIR for enrolment in Ph.D.

Supplementary material

12033_2015_9842_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)
12033_2015_9842_MOESM2_ESM.pptx (807 kb)
Supplementary material 2 (PPTX 806 kb)


  1. 1.
    Adams, E., & Shin, R. (2014). Transport, signaling, and homeostasis of potassium and sodium in plants. Journal of Integrative Plant Biology, 56, 231–249.CrossRefGoogle Scholar
  2. 2.
    Maser, P., Thomine, S., Schroeder, J. I., Ward, J. M., Hirschi, K., Sze, H., et al. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 126, 1646–1667.CrossRefGoogle Scholar
  3. 3.
    Maser, P., Gierth, M., & Schroeder, J. I. (2002). Molecular mechanisms of potassium and sodium uptake in plants. Plant and Soil, 247, 43–54.CrossRefGoogle Scholar
  4. 4.
    Almeida, P., Katschnig, D., & de Boer, A. H. (2013). HKT transporters-state of the art. International Journal of Molecular Sciences, 14, 20359–20385.CrossRefGoogle Scholar
  5. 5.
    Platten, J. D., Cotsaftis, O., Berthomieu, P., Bohnert, H., Davenport, R. J., Fairbairn, D. J., et al. (2006). Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends in Plant Science, 11, 372–374.CrossRefGoogle Scholar
  6. 6.
    Maser, P., Hosoo, Y., Goshima, S., Horie, T., Eckelman, B., Yamada, K., et al. (2002). Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proceedings of the National Academy of Sciences of the United States of America, 99, 6428–6433.CrossRefGoogle Scholar
  7. 7.
    Ali, Z., Park, H. C., Ali, A., Oh, D. H., Aman, R., Kropornicka, A., et al. (2012). TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl. Plant Physiology, 158, 1463–1474.CrossRefGoogle Scholar
  8. 8.
    Takahashi, R., Liu, S., & Takano, T. (2007). Cloning and functional comparison of a high-affinity K+ transporter gene PhaHKT1 of salt-tolerant and salt-sensitive reed plants. Journal of Experimental Botany, 58, 4387–4395.CrossRefGoogle Scholar
  9. 9.
    Ardie, S. W., Xie, L., Takahashi, R., Liu, S., & Takano, T. (2009). Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. Journal of Experimental Botany, 60, 3491–3502.CrossRefGoogle Scholar
  10. 10.
    Gulzar, S., & Khan, M. A. (2001). Seed germination of a halophytic grass Aeluropus lagopoides. Annals of Botany, 87, 319–324.CrossRefGoogle Scholar
  11. 11.
    Mohsenzadeh, S., Malboobi, M. A., Razavi, K., & Farrahi-Aschtiani, S. (2006). Physiological and molecular responses of Aeluropus lagopoides (Poaceae) to water deficit. Environmental and Experimental Botany, 56, 314–322.CrossRefGoogle Scholar
  12. 12.
    Sobhanian, H., Motamed, N., Jazii, F. R., Nakamura, T., & Komatsu, S. (2010). Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a Halophyte C-4 Plant. Journal of Proteome Research, 9, 2882–2897.CrossRefGoogle Scholar
  13. 13.
    Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347, 1–32.Google Scholar
  14. 14.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.CrossRefGoogle Scholar
  15. 15.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.CrossRefGoogle Scholar
  16. 16.
    Omasits, U., Ahrens, C. H., Muller, S., & Wollscheid, B. (2014). Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics, 30, 884–886.CrossRefGoogle Scholar
  17. 17.
    Haro, R., & Rodriguez-Navarro, A. (2003). Functional analysis of the M2(D) helix of the TRK1 potassium transporter of Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 1613, 1–6.CrossRefGoogle Scholar
  18. 18.
    Quintero, F. J., Garciadeblas, B., & Rodriguez-Navarro, A. (1996). The SAL1 gene of Arabidopsis, encoding an enzyme with 3′(2′),5′-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell, 8, 529–537.Google Scholar
  19. 19.
    Brunelli, J. P., & Pall, M. L. (1993). A series of yeast/Escherichia coli λ expression vectors designed for directional cloning of cDNAs and cre/lox-mediated plasmid excision. Yeast, 9, 1309–1318.CrossRefGoogle Scholar
  20. 20.
    Gietz, D., Stjean, A., Woods, R. A., & Schiestl, R. H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Research, 20, 1425.CrossRefGoogle Scholar
  21. 21.
    Rodriguez-Navarro, A., & Ramos, J. (1984). Dual system for potassium transport in Saccharomyces cerevisiae. Journal of Bacteriology, 159, 940–945.Google Scholar
  22. 22.
    Durell, S. R., & Guy, H. R. (1999). Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K+ channel. Biophysical Journal, 77, 789–807.CrossRefGoogle Scholar
  23. 23.
    Durell, S. R., Hao, Y. L., Nakamura, T., Bakker, E. P., & Guy, H. R. (1999). Evolutionary relationship between K+ channels and symporters. Biophysical Journal, 77, 775–788.CrossRefGoogle Scholar
  24. 24.
    Kato, Y., Sakaguchi, M., Mori, Y., Saito, K., Nakamura, T., Bakker, E. P., et al. (2001). Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proceedings of the National Academy of Sciences of the United States of America, 98, 6488–6493.CrossRefGoogle Scholar
  25. 25.
    Kato, N., Akai, M., Zulkifli, L., Matsuda, N., Kato, Y., Goshima, S., et al. (2007). Role of positively charged amino acids in the M2(D) transmembrane helix of Ktr/Trk/HKT type cation transporters. Channels, 1, 161–171.CrossRefGoogle Scholar
  26. 26.
    Gassmann, W., Rubio, F., & Schroeder, J. I. (1996). Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant Journal, 10, 869–882.CrossRefGoogle Scholar
  27. 27.
    Corratge-Faillie, C., Jabnoune, M., Zimmermann, S., Very, A. A., Fizames, C., & Sentenac, H. (2010). Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cellular and Molecular Life Sciences, 67, 2511–2532.CrossRefGoogle Scholar
  28. 28.
    Rubio, F., Gassmann, W., & Schroeder, J. I. (1995). Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science, 270, 1660–1663.CrossRefGoogle Scholar
  29. 29.
    Uozumi, N., Kim, E. J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., et al. (2000). The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiology, 122, 1249–1259.CrossRefGoogle Scholar
  30. 30.
    Sassi, A., Mieulet, D., Khan, I., Moreau, B., Gaillard, I., Sentenac, H., & Very, A. A. (2012). The rice monovalent cation transporter OsHKT2;4: revisited ionic selectivity. Plant Physiology, 160, 498–510.CrossRefGoogle Scholar
  31. 31.
    Schachtman, D. P., & Schroeder, J. I. (1994). Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature, 370, 655–658.CrossRefGoogle Scholar
  32. 32.
    Horie, T., Sugawara, M., Okunou, K., Nakayama, H., Schroeder, J. I., Shinmyo, A., & Yoshida, K. (2008). Functions of HKT transporters in sodium transport in roots and in protecting leaves from salinity stress. Plant Biotechnology, 25, 233–239.CrossRefGoogle Scholar
  33. 33.
    Rubio, F., Schwarz, M., Gassmann, W., & Schroeder, J. I. (1999). Genetic selection of mutations in the high affinity K+ transporter HKT1 that define functions of a loop site for reduced Na+ permeability and increased Na+ tolerance. Journal of Biological Chemistry, 274, 6839–6847.CrossRefGoogle Scholar
  34. 34.
    Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S., & Shinmyo, A. (2001). Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant Journal, 27, 129–138.CrossRefGoogle Scholar
  35. 35.
    Corratge, C., Zimmermann, S., Lambilliotte, R. R. L., Plassard, C., Marmeisse, R., Thibaud, J. B., et al. (2007). Molecular and functional characterization of a Na+–K+ transporter from the Trk family in the ectomycorrhizal fungus Hebeloma cylindrosporum. Journal of Biological Chemistry, 282, 26057–26066.CrossRefGoogle Scholar
  36. 36.
    Garciadeblas, B., Senn, M. E., Banuelos, M. A., & Rodriguez-Navarro, A. (2003). Sodium transport and HKT transporters: the rice model. Plant Journal, 34, 788–801.CrossRefGoogle Scholar
  37. 37.
    Golldack, D., Su, H., Quigley, F., Kamasani, U. R., Munoz-Garay, C., Balderas, E., et al. (2002). Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant Journal, 31, 529–542.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Payal Sanadhya
    • 1
    • 2
  • Parinita Agarwal
    • 1
  • Jackson Khedia
    • 1
    • 2
  • Pradeep K. Agarwal
    • 1
    • 2
  1. 1.Discipline of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI)Council of Scientific and Industrial Research (CSIR)BhavnagarIndia
  2. 2.Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI)Council of Scientific and Industrial Research (CSIR)BhavnagarIndia

Personalised recommendations