Advertisement

Molecular Biotechnology

, Volume 57, Issue 5, pp 475–488 | Cite as

Introduction of Pea DNA Helicase 45 into Sugarcane (Saccharum spp. Hybrid) Enhances Cell Membrane Thermostability and Upregulation of Stress-Responsive Genes Leads to Abiotic Stress Tolerance

  • Sruthy Maria Augustine
  • J. Ashwin Narayan
  • Divya P. Syamaladevi
  • C. Appunu
  • M. Chakravarthi
  • V. Ravichandran
  • Narendra Tuteja
  • N. SubramonianEmail author
Research

Abstract

DNA helicases are motor proteins that play an essential role in nucleic acid metabolism, by providing a duplex-unwinding function. To improve the drought and salinity tolerance of sugarcane, a DEAD-box helicase gene isolated from pea with a constitutive promoter, Port Ubi 2.3 was transformed into the commercial sugarcane variety Co 86032 through Agrobacterium-mediated transformation, and the transgenics were screened for tolerance to soil moisture stress and salinity. The transgene integration was confirmed through polymerase chain reaction, and the V 0 transgenic events showed significantly higher cell membrane thermostability under normal irrigated conditions. The V 1 transgenic events were screened for tolerance to soil moisture stress and exhibited significantly higher cell membrane thermostability, transgene expression, relative water content, gas exchange parameters, chlorophyll content, and photosynthetic efficiency under soil moisture stress compared to wild-type (WT). The overexpression of PDH45 transgenic sugarcane also led to the upregulation of DREB2-induced downstream stress-related genes. The transgenic events demonstrated higher germination ability and better chlorophyll retention than WT under salinity stress. Our results suggest the possibility for development of increased abiotic stress tolerant sugarcane cultivars through overexpression of PDH45 gene. Perhaps this is the first report, which provides evidence for increased drought and salinity tolerance in sugarcane through overexpression of PDH45.

Keywords

Sugarcane Transformation PDH45 Drought tolerance Salinity tolerance Cell membrane thermostability 

Notes

Acknowledgments

This work was supported by the Department of Biotechnology (DBT) (Grant No. 102/IFD/SAN/325/2013-2014), Government of India.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12033_2015_9841_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 kb)

References

  1. 1.
    Amin, M., Elias, S. M., Hossain, A., Ferdousi, A., Rahman, S., Tuteja, N., & Seraj, Z. I. (2011). Over-expression of a DEAD-box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.). Molecular Breeding. doi: 10.1007/s11032-011-9625-3.
  2. 2.
    Araus, J. L., Slafer, G. A., Reynolds, M. P., & Royo, C. (2002). Plant breeding and water relations in C3 cereals: What should we breed for? Annals of Botany (London), 89, 925–940.CrossRefGoogle Scholar
  3. 3.
    Arvinth, S., Arun, S., Selvakesavan, R. K., Srikanth, J., Mukunthan, N., Ananda Kumar, P., et al. (2010). Genetic transformation and pyramiding of aprotinin expressing sugarcane with cry1Ab for shoot borer (Chilo infuscatellus) resistance. Plant Cell Reports, 29, 383–395.CrossRefGoogle Scholar
  4. 4.
    Barrs, H. D., & Weatherley, P. E. (1962). A reexamination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15, 413–428.Google Scholar
  5. 5.
    Blum, A. (1998). Improving wheat grain filling under stress by stem reserve mobilization. Euphytica, 100, 77–83.CrossRefGoogle Scholar
  6. 6.
    Borrell, A. K., Hammer, G. L., & Douglas, A. C. L. (2000). Does maintaining green leaf area in sorghum improve yield under drought? Leaf growth and senescence. Crop Science, 40, 1026–1037.CrossRefGoogle Scholar
  7. 7.
    Boyer, J. S. (1982). Plant productivity and environmental. Science, 218, 443–448.CrossRefGoogle Scholar
  8. 8.
    Bray, E. A. (1997). Plant responses to water deficit. Trends in Plant Science, 2, 48–54.CrossRefGoogle Scholar
  9. 9.
    Chandra Babu, R., Zhang, J. X., Blum, A., Ho, D. T. H., Wu, R., & Nguyen, H. T. (2004). HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Science, 166, 855–862. doi: 10.1016/j.plantsci.2003.11.023.CrossRefGoogle Scholar
  10. 10.
    Chomczynski, P., & Mackey, K. (1995). Modification of the TRI reagent DNA/protein isolation procedure for isolation of RNA from polysaccharide and proteoglycan rich sources. BioTechniques, 19, 942–945.Google Scholar
  11. 11.
    Crafts-Brandner, S. J., Below, F. E., Harper, J. E., & Hageman, R. H. (1984). Effects of pod removal on metabolism and senescence of nodulating and nonnodulating soybean isolines: II. Enzymes and Chlorophyll. Plant Physiology, 75(2), 318–322.CrossRefGoogle Scholar
  12. 12.
    Dang, H. Q., Tran, N. Q., Gill, S. S., Tuteja, R., & Tuteja, N. (2011). A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield. Plant Molecular Biology, 76, 19–34.CrossRefGoogle Scholar
  13. 13.
    Engelbrecht, B. M. J., Melvin, T. T., & Thomas, A. K. (2007). Visual assessment of wilting as a measure of leaf water potential and seedling drought survival. Journal of Tropical Ecology, 23, 497–500.CrossRefGoogle Scholar
  14. 14.
    Fan, L., Zheng, S., & Wang, X. (1997). Antisense suppression of phospholipase Da retards abscisic acid and ethylene-promoted senescence of postharvest Arabidopsis leaves. The Plant Cell, 9, 2183–2196.Google Scholar
  15. 15.
    Haussmann, B., Mahalakshmi, V., Reddy, B., Seetharama, N., Hash, C., & Geiger, H. (2002). QTL mapping of stay-green in two sorghum recombinant inbred populations. Theoretical and Applied Genetics, 106, 133–142.Google Scholar
  16. 16.
    Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nature Biotechnology, 17, 287–291.CrossRefGoogle Scholar
  17. 17.
    Kovtun, Y., Chiu, W. L., Tena, G., & Sheen, J. (2000). Functional analysis of oxidative stress-activated MAPK cascade in plants. Proceedings of the National Academy of Sciences, 97, 2940–2945.CrossRefGoogle Scholar
  18. 18.
    Li, R. H., Guo, P. G., Michael, B., Stefania, G., & Salvatore, C. (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences in China, 5(10), 751–757.CrossRefGoogle Scholar
  19. 19.
    Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.CrossRefGoogle Scholar
  20. 20.
    Manjulatha, M., Sreevathsa, R., Kumar, A. M., Sudhakar, C., Prasad, T. G., Tuteja, N., & Udayakumar, M. (2014). Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress. Molecular Biotechnology, 56(2), 111–125.CrossRefGoogle Scholar
  21. 21.
    Martineau, J. R., Specht, J. E., Williams, J. H., & Sullivan, C. Y. (1979). Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Science, 19, 75–78.CrossRefGoogle Scholar
  22. 22.
    Moradi, F., & Ismail, A. M. (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of Botany, 99, 1161–1173.CrossRefGoogle Scholar
  23. 23.
    Owttrim, G. W. (2013). RNA helicases: Diverse roles in prokaryotic response to abiotic stress. Plant Signaling & Behavior, 10(1), 95–109.Google Scholar
  24. 24.
    Pham, X. H., Reddy, M. K., Ehtesham, N. Z., Matta, B., & Tuteja, N. (2000). A DNA helicase from Pisum sativum is homologous to translation initiation factor and stimulates topoisomerase I activity. The Plant Journal, 24, 219–229.CrossRefGoogle Scholar
  25. 25.
    Phillip, A., Syamaladevi, D. P., Chakravarthy, M., Gopinath, K., & Subramonian, N. (2013). 5′ Regulatory region of ubiquitin 2 gene from Porteresia coarctata makes efficient promoters for transgene expression in monocots and dicots. Plant Cell Reports, 32, 1199–1210.CrossRefGoogle Scholar
  26. 26.
    Sahoo, R. K., Gill, S. S., & Tuteja, N. (2012). Pea DNA helicase 45 promotes salinity stress tolerance in IR64 rice with improved yield. Plant Signaling & Behavior, 7, 1037–1041.CrossRefGoogle Scholar
  27. 27.
    Sahoo, R. K., Gill, S. S., & Tuteja, N. (2012). Pea DNA helicase 45 promotes salinity stress tolerance in IR64 rice with improved yield. Plant Signaling & Behavior, 7(8), 1042–1046.CrossRefGoogle Scholar
  28. 28.
    Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., & Izui, K. (2000). Over expression of a single Ca2+ dependent protein kinase confers both cold and salt/drought tolerance on rice plants. The Plant Journal, 23, 319–327.CrossRefGoogle Scholar
  29. 29.
    Sambrook, J., & Russel, D. W. (1989). Molecular cloning: A laboratory manual (III ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  30. 30.
    Sanan Mishra, N., Pham, X. H., Sopory, S. K., & Tuteja, N. (2005). Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proceedings of the National Academy of Sciences of the United States of America, 102, 509–514.CrossRefGoogle Scholar
  31. 31.
    Singh, S., Modi, M. K., Gill, S. S., & Tuteja, N. (2012). Rice: Genetic engineering approaches for abiotic stress tolerance retrospects and prospects. In N. Tuteja, S. S. Gill, & R. Tuteja (Eds.), Improving crop productivity in sustainable agriculture (pp. 203–225). Germany: Wiley-VCH Verlag GmbH and Co, KGaA.Google Scholar
  32. 32.
    Tuteja, N., & Tuteja, R. (2004). Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. European Journal of Biochemistry, 271, 1835–1848.CrossRefGoogle Scholar
  33. 33.
    Tuteja, N., Gill, S. S., & Tuteja, R. (2012). Helicases in improving abiotic stress tolerance in crop plants. In N. Tuteja, S. S. Gill, A. F. Tiburcio, & R. Tuteja (Eds.), Improving crop resistance to abiotic stress (pp. 433–445). Germany: Wiley-VCH Verlag GmbH and Co, KGaA.CrossRefGoogle Scholar
  34. 34.
    Tuteja, N., Singh, L. P., Gill, S. S., & Tuteja, R. (2012). Salinity stress: A major constraint in crop production. In N. Tuteja, S. S. Gill, A. F. Tiburcio, & R. Tuteja (Eds.), Improving crop resistance to abiotic stress (pp. 71–96). Germany: Wiley-VCH Verlag GmbH and Co, KGaA.CrossRefGoogle Scholar
  35. 35.
    Umate, P., Tuteja, R., & Tuteja, N. (2010). Genome-wide analysis of helicase gene family from rice and Arabidopsis: A comparison with yeast and human. Plant Molecular Biology, 73, 449–465.CrossRefGoogle Scholar
  36. 36.
    Vashisht, A. A., & Tuteja, N. (2006). Stress responsive DEAD-box helicases: A new pathway to engineer plant stress tolerance. Journal of Photochemistry and Photobiology B: Biology, 84, 150–160.CrossRefGoogle Scholar
  37. 37.
    Veena Reddy, V. S., & Sopory, S. K. (1999). Glyoxalase I from (Brassica juncea) molecular cloning, regulation, and its over expression confer tolerance in transgenic tobacco under stress. The Plant Journal, 17, 385–395.CrossRefGoogle Scholar
  38. 38.
    Verma, V., Foullces, M. J., Worland, A. J., Sylvester-Bradley, R., Caligari, P. D. S., & Snape, J. W. (2004). Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica, 135, 255–263.CrossRefGoogle Scholar
  39. 39.
    Winicov, I. (2000). Alfin1 transcription factor over expression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta, 210, 416–422.CrossRefGoogle Scholar
  40. 40.
    Wu, Y. (2012). Unwinding and rewinding double faces of helicase? Journal of Nucleic Acids, 2012, 140601. doi: 10.1155/2012/140601.CrossRefGoogle Scholar
  41. 41.
    Xu, D., Duan, X., Wang, B., Hong, B., Ho, T., & Wu, R. (1996). Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology, 110, 249–257.Google Scholar
  42. 42.
    Zhang, H. K., Hodson, J. N., Williams, J. P., & Blumwald, E. (2001). Engineering salt tolerant (Brassica) plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proceedings of the National Academy of Sciences, 98, 12832–12836.CrossRefGoogle Scholar
  43. 43.
    Zhang, Z. H., Liu, Q., Song, H. X., Rong, X. M., & Ismail, A. M. (2012). Responses of different rice (Oryza sativa L.) genotypes to salt stress and relation to carbohydrate metabolism and chlorophyll content. African Journal of Agricultural Research, 7, 19–27.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sruthy Maria Augustine
    • 1
  • J. Ashwin Narayan
    • 1
  • Divya P. Syamaladevi
    • 2
  • C. Appunu
    • 1
  • M. Chakravarthi
    • 1
  • V. Ravichandran
    • 3
  • Narendra Tuteja
    • 4
  • N. Subramonian
    • 1
    Email author
  1. 1.Sugarcane Breeding Institute (ICAR)Tamil NaduIndia
  2. 2.Indian Grass and Fodder Research Institute Regional StationAvikanagarIndia
  3. 3.Department of RiceTamil Nadu Agricultural UniversityCoimbatoreIndia
  4. 4.International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia

Personalised recommendations