Advertisement

Molecular Biotechnology

, Volume 57, Issue 4, pp 325–336 | Cite as

In planta Production of Flock House Virus Transencapsidated RNA and Its Potential Use as a Vaccine

  • Yiyang Zhou
  • Payal D. Maharaj
  • Jyothi K. Mallajosyula
  • Alison A. McCormick
  • Christopher M. Kearney
Research

Abstract

We have developed a transencapsidated vaccine delivery system based on the insect virus, Flock House virus (FHV). FHV is attractive due to its small genome size, simple organization, and nonpathogenic characteristics. With the insertion of a Tobacco mosaic virus (TMV) origin of assembly (Oa), the independently replicating FHV RNA1 can be transencapsidated by TMV coat protein. In this study, we demonstrated that the Oa-adapted FHV RNA1 transencapsidation process can take place in planta, by using a bipartite plant expression vector system, where TMV coat protein is expressed by another plant virus vector, Foxtail mosaic virus (FoMV). Dual infection in the same cell by both FHV and FoMV was observed. Though an apparent classical coat protein-mediated resistance repressed FHV expression, this was overcome by delaying inoculation of the TMV coat protein vector by 3 days after FHV vector inoculation. Expression of the transgene marker in animals by these in vivo-generated transencapsidated nanoparticles was confirmed by mouse vaccination, which also showed an improved vaccine response compared to similar in vitro-produced vaccines.

Keywords

Nanoparticle Vaccine Flock House virus Tobacco mosaic virus Plant 

Supplementary material

12033_2014_9826_MOESM1_ESM.pptx (391 kb)
Supplementary material 1 (PPTX 390 kb)

References

  1. 1.
    Gutierro, I., Hernandez, R. M., Igartua, M., Gascon, A. R., & Pedraz, J. L. (2002). Influence of dose and immunization route on the serum Ig G antibody response to BSA loaded PLGA microspheres. Vaccine, 20, 2181–2190.CrossRefGoogle Scholar
  2. 2.
    Gutierro, I., Hernandez, R. M., Igartua, M., Gascon, A. R., & Pedraz, J. L. (2002). Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine, 21, 67–77.CrossRefGoogle Scholar
  3. 3.
    Dobrovolskaia, M. A., & McNeil, S. E. (2007). Immunological properties of engineered nanomaterials. Nature Nanotechnology, 2, 469–478.CrossRefGoogle Scholar
  4. 4.
    McCormick, A. A., Reddy, S., Reinl, S. J., Cameron, T. I., Czerwinkski, D. K., Vojdani, F., et al. (2008). Plant-produced idiotype vaccines for the treatment of non-Hodgkin’s lymphoma: safety and immunogenicity in a phase I clinical study. Proceedings of the National Academy of Sciences of the United States of America, 105, 10131–10136.CrossRefGoogle Scholar
  5. 5.
    Aires, K. A., Cianciarullo, A. M., Carneiro, S. M., Villa, L. L., Boccardo, E., Perez-Martinez, G., et al. (2006). Production of human papillomavirus type 16 L1 virus-like particles by recombinant Lactobacillus casei cells. Applied and Environmental Microbiology, 72, 745–752.CrossRefGoogle Scholar
  6. 6.
    Huang, Z., Santi, L., LePore, K., Kilbourne, J., Arntzen, C. J., & Mason, H. S. (2006). Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine, 24, 2506–2513.CrossRefGoogle Scholar
  7. 7.
    Zhou, J., Sun, X. Y., Stenzel, D. J., & Frazer, I. H. (1991). Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology, 185, 251–257.CrossRefGoogle Scholar
  8. 8.
    Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S., & Reis e Sousa, C. (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science, 303, 1529–1531.CrossRefGoogle Scholar
  9. 9.
    Lund, J. M., Alexopoulou, L., Sato, A., Karow, M., Adams, N. C., Gale, N. W., et al. (2004). Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proceedings of the National Academy of Sciences of the United States of America, 101, 5598–5603.CrossRefGoogle Scholar
  10. 10.
    Schwarz, K., Storni, T., Manolova, V., Didierlaurent, A., Sirard, J. C., Rothlisberger, P., & Bachmann, M. F. (2003). Role of Toll-like receptors in costimulating cytotoxic T cell responses. European Journal of Immunology, 33, 1465–1470.CrossRefGoogle Scholar
  11. 11.
    Pogue, G. P., Lindbo, J. A., Garger, S. J., & Fitzmaurice, W. P. (2002). Making an ally from an enemy: plant virology and the new agriculture. Annual Review of Phytopathology, 40, 45–74.CrossRefGoogle Scholar
  12. 12.
    Liu, R., Vaishnav, R. A., Roberts, A. M., & Friedland, R. P. (2013). Humans have antibodies against a plant virus: Evidence from tobacco mosaic virus. PLoS One, 8, e60621.CrossRefGoogle Scholar
  13. 13.
    McCormick, A. A., Corbo, T. A., Wykoff-Clary, S., Palmer, K. E., & Pogue, G. P. (2006). Chemical conjugate TMV-peptide bivalent fusion vaccines improve cellular immunity and tumor protection. Bioconjugate Chemistry, 17, 1330–1338.CrossRefGoogle Scholar
  14. 14.
    McCormick, A. A., Corbo, T. A., Wykoff-Clary, S., Nguyen, L. V., Smith, M. L., Palmer, K. E., & Pogue, G. P. (2006). TMV-peptide fusion vaccines induce cell-mediated immune responses and tumor protection in two murine models. Vaccine, 24, 6414–6423.CrossRefGoogle Scholar
  15. 15.
    Smith, M. L., Lindbo, J. A., Dillard-Telm, S., Brosio, P. M., Lasnik, A. B., McCormick, A. A., et al. (2006). Modified tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications. Virology, 348, 475–488.CrossRefGoogle Scholar
  16. 16.
    Mallajosyula, J. K., Hiatt, E., Hume, S., Johnson, A., Jeevan, T., Chikwamba, R., et al. (2013). Single-dose monomeric HA subunit vaccine generates full protection from influenza challenge. Human Vaccines & Immunotherapeutics, 10, 586–595.CrossRefGoogle Scholar
  17. 17.
    Fraile, A., Escriu, F., Aranda, M. A., Malpica, J. M., Gibbs, A. J., & Garcia-Arenal, F. (1997). A century of tobamovirus evolution in an Australian population of Nicotiana glauca. Journal of Virology, 71, 8316–8320.Google Scholar
  18. 18.
    Kemnade, J. O., Seethammagari, M., Collinson-Pautz, M., Kaur, H., Spencer, D. M., & McCormick, A. A. (2014). Tobacco mosaic virus efficiently targets DC uptake, activation and antigen-specific T cell responses in vivo. Vaccine, 32, 4228–4233.CrossRefGoogle Scholar
  19. 19.
    Koo, M., Bendahmane, M., Lettieri, G. A., Paoletti, A. D., Lane, T. E., Fitchen, J. H., et al. (1999). Protective immunity against murine hepatitis virus (MHV) induced by intranasal or subcutaneous administration of hybrids of tobacco mosaic virus that carries an MHV epitope. Proceedings of the National Academy of Sciences of the United States of America, 96, 7774–7779.CrossRefGoogle Scholar
  20. 20.
    Yin, Z., Nguyen, H. G., Chowdhury, S., Bentley, P., Bruckman, M. A., Miermont, A., et al. (2012). Tobacco mosaic virus as a new carrier for tumor associated carbohydrate antigens. Bioconjugate Chemistry, 23, 1694–1703.CrossRefGoogle Scholar
  21. 21.
    Smith, M. L., Corbo, T., Bernales, J., Lindbo, J. A., Pogue, G. P., Palmer, K. E., & McCormick, A. A. (2007). Assembly of trans-encapsidated recombinant viral vectors engineered from Tobacco mosaic virus and Semliki Forest virus and their evaluation as immunogens. Virology, 358, 321–333.CrossRefGoogle Scholar
  22. 22.
    Lundstrom, K. (2003). Semliki Forest virus vectors for gene therapy. Expert Opinion on Biological Therapy, 3, 771–777.CrossRefGoogle Scholar
  23. 23.
    Mahraj, P. D., Mallajosyula, J. K., Lee, G., Thi, P., Zhou, Y., Kearney, C. M. & McCormick, A. A. (2014). Nanoparticle encapsidation of Flock House virus by auto assembly of Tobacco Mosaic virus coat protein. International Journal of Molecular Sciences, 15, 18540–18556. Google Scholar
  24. 24.
    Johnson, K. L., & Ball, L. A. (1999). Induction and maintenance of autonomous flock house virus RNA1 replication. Journal of Virology, 73, 7933–7942.Google Scholar
  25. 25.
    Selling, B. H., Allison, R. F., & Kaesberg, P. (1990). Genomic RNA of an insect virus directs synthesis of infectious virions in plants. Proceedings of the National Academy of Sciences of the United States of America, 87, 434–438.CrossRefGoogle Scholar
  26. 26.
    Price, B., Roeder, M., & Ahlquist, P. (2000). DNA-directed expression of functional flock house virus RNA1 derivatives in Saccharomyces cerevisiae, heterologous gene expression, and selective effects on subgenomic mRNA synthesis. Journal of Virology, 74, 11724–11733.CrossRefGoogle Scholar
  27. 27.
    Lindbo, J. A. (2007). High-efficiency protein expression in plants from agroinfection-compatible Tobacco mosaic virus expression vectors. BMC Biotechnology, 7, 52.CrossRefGoogle Scholar
  28. 28.
    Turner, D. R., & Butler, P. J. (1986). Essential features of the assembly origin of tobacco mosaic virus RNA as studied by directed mutagenesis. Nucleic Acids Research, 14, 9229–9242.CrossRefGoogle Scholar
  29. 29.
    Liu, Z., & Kearney, C. M. (2010). An efficient Foxtail mosaic virus vector system with reduced environmental risk. BMC Biotechnology, 10, 88.CrossRefGoogle Scholar
  30. 30.
    Dasgupta, R., Cheng, L. L., Bartholomay, L. C., & Christensen, B. M. (2003). Flock house virus replicates and expresses green fluorescent protein in mosquitoes. Journal of General Virology, 84, 1789–1797.CrossRefGoogle Scholar
  31. 31.
    Price, B. D., Ahlquist, P., & Ball, L. A. (2002). DNA-directed expression of an animal virus RNA for replication-dependent colony formation in Saccharomyces cerevisiae. Journal of Virology, 76, 1610–1616.CrossRefGoogle Scholar
  32. 32.
    Scholthof, H. B. (2006). The Tombusvirus-encoded P19: From irrelevance to elegance. Nature Reviews Microbiology, 4, 405–411.CrossRefGoogle Scholar
  33. 33.
    Ball, L. A., Amann, J. M., & Garrett, B. K. (1992). Replication of nodamura virus after transfection of viral-RNA into mammalian-cells in culture. Journal of Virology, 66, 2326–2334.Google Scholar
  34. 34.
    Hwang, D. J., Roberts, I. M., & Wilson, T. M. (1994). Expression of tobacco mosaic virus coat protein and assembly of pseudovirus particles in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 91, 9067–9071.CrossRefGoogle Scholar
  35. 35.
    Sleat, D. E., Gallie, D. R., Watts, J. W., Deom, C. M., Turner, P. C., Beachy, R. N., & Wilson, T. M. (1988). Selective recovery of foreign gene transcripts as virus-like particles in TMV-infected transgenic tobaccos. Nucleic Acids Research, 16, 3127–3140.CrossRefGoogle Scholar
  36. 36.
    Sacher, R., French, R., & Ahlquist, P. (1988). Hybrid brome mosaic virus RNAs express and are packaged in tobacco mosaic virus coat protein in vivo. Virology, 167, 15–24.CrossRefGoogle Scholar
  37. 37.
    Annamalai, P., Rofail, F., Demason, D. A., & Rao, A. L. (2008). Replication-coupled packaging mechanism in positive-strand RNA viruses: Synchronized coexpression of functional multigenome RNA components of an animal and a plant virus in Nicotiana benthamiana cells by agroinfiltration. Journal of Virology, 82, 1484–1495.CrossRefGoogle Scholar
  38. 38.
    Rao, A. L. (2006). Genome packaging by spherical plant RNA viruses. Annual Review of Phytopathology, 44, 61–87.CrossRefGoogle Scholar
  39. 39.
    Wilson, T. M., & McNicol, J. W. (1995). A conserved, precise RNA encapsidation pattern in Tobamovirus particles. Archives of Virology, 140, 1677–1685.CrossRefGoogle Scholar
  40. 40.
    Abel, P. P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T., & Beachy, R. N. (1986). Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 232, 738–743.CrossRefGoogle Scholar
  41. 41.
    Lindenbach, B. D., Sgro, J. Y., & Ahlquist, P. (2002). Long-distance base pairing in flock house virus RNA1 regulates subgenomic RNA3 synthesis and RNA2 replication. Journal of Virology, 76, 3905–3919.CrossRefGoogle Scholar
  42. 42.
    Sztuba-Solinska, J., Stollar, V., & Bujarski, J. J. (2011). Subgenomic messenger RNAs: Mastering regulation of (+)-strand RNA virus life cycle. Virology, 412, 245–255.CrossRefGoogle Scholar
  43. 43.
    Phua, K. K., Nair, S. K., & Leong, K. W. (2014). Messenger RNA (mRNA) nanoparticle tumour vaccination. Nanoscale, 6, 7715–7729.CrossRefGoogle Scholar
  44. 44.
    Weiner, D. B. (2013). RNA-based vaccination: Sending a strong message. Molecular Therapy, 21, 506–508.CrossRefGoogle Scholar
  45. 45.
    Bonehill, A., Heirman, C., Tuyaerts, S., Michiels, A., Breckpot, K., Brasseur, F., et al. (2004). Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. The Journal of Immunology, 172, 6649–6657.CrossRefGoogle Scholar
  46. 46.
    Van Tendeloo, V. F., Ponsaerts, P., Lardon, F., Nijs, G., Lenjou, M., Van Broeckhoven, C., et al. (2001). Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: Superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood, 98, 49–56.CrossRefGoogle Scholar
  47. 47.
    Tkachenko, A. G., Xie, H., Coleman, D., Glomm, W., Ryan, J., Anderson, M. F., et al. (2003). Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. Journal of the American Chemical Society, 125, 4700–4701.CrossRefGoogle Scholar
  48. 48.
    Oliveira, S., van Rooy, I., Kranenburg, O., Storm, G., & Schiffelers, R. M. (2007). Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. International Journal of Pharmaceutics, 331, 211–214.CrossRefGoogle Scholar
  49. 49.
    Erazo-Oliveras, A., Muthukrishnan, N., Baker, R., Wang, T.-Y., & Pellois, J.-P. (2012). Improving the endosomal escape of cell-penetrating peptides and their cargos: Strategies and challenges. Pharmaceuticals, 5, 1177–1209.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yiyang Zhou
    • 1
  • Payal D. Maharaj
    • 2
  • Jyothi K. Mallajosyula
    • 2
  • Alison A. McCormick
    • 2
  • Christopher M. Kearney
    • 1
    • 3
  1. 1.Biomedical Studies ProgramBaylor UniversityWacoUSA
  2. 2.College of PharmacyTouro University CaliforniaVallejoUSA
  3. 3.Department of BiologyBaylor UniversityWacoUSA

Personalised recommendations