Advertisement

Molecular Biotechnology

, Volume 57, Issue 1, pp 65–74 | Cite as

Application of ISSR Markers to Analyze Molecular Relationships in Iranian Jasmine (Jasminum spp.) Accessions

  • Masood Ghasemi Ghehsareh
  • Hassan SalehiEmail author
  • Morteza Khosh-Khui
  • Ali Niazi
Research

Abstract

There are many species of jasmines in different regions of Iran in natural or cultivated form, and there is no information about their genetic status. Therefore, inter-simple sequence repeat (ISSR) analysis was used to evaluate genetic variations of the 53 accessions representing eight species of Jasminum collected from different regions of Iran. A total of 21 ISSR primers were used which generated 981 bands of different sizes. Mean percentage of polymorphic bands was 90.64 %. Maximum resolving power, polymorphic information content average, and marker index values were 21.55, 0.35, and 14.42 for primers of 3, 4, and 3 respectively. The unweighted pair group method with arithmetic mean dendrogram based on Jaccard’s coefficients indicated that 53 accessions were divided into two major clusters. The first major cluster was divided into two subclusters; the subcluster A included Jasminum grandiflorum L., J. officinale L., and J. azoricum L. and the subcluster B consisted of three forms of J. sambac L. (single, semi-double, and double flowers). The second major cluster was divided into two subclusters; the first subcluster (C) included J. humile L., J. primulinum Hemsl., J. nudiflorum Lindl. and the second subcluster (D) consisted of J. fruticans L. At the species level, the highest percentage of polymorphism (34.05 %), numbers of effective alleles (1.16), Shannon index (0.151), and Nei’s genetic diversity (0.098) were observed in J. officinale. The lowest values of percentage polymorphism (0.011), number of effective alleles (1.009), Shannon index (0.007), and Nei’s genetic diversity (0.005) were obtained for J. nudiflorum. Based on pairwise population matrix of Nei’s unbiased genetic identity, the highest identity (0.85) was found between J.officinale and J. azoricum and the lowest identity (0.69) was between J. grandiflorum and J. perimulinum. Based on analysis of molecular variance, the amount of genetic variations among the eight populations was 83 %. This study demonstrated that the ISSR is an useful tool in jasmine genomic diversity studies and to detect their relationships.

Keywords

Jasmine Molecular markers Genetic diversity Polymorphism 

References

  1. 1.
    Sabeti, H. (2006). Forests, trees and shrubs of Iran (p. 874). Iran: Yazd University Publication. in Farsi.Google Scholar
  2. 2.
    Dickey, R.D. (1970). In E. A. Meninger (Ed.), Flowering vines of the world (p. 410). New York: Heartside Press Inc.Google Scholar
  3. 3.
    Vijayakumar, M., Arumugum, T., Jawaharlal, M., & Bhattacharjee, S. K. (2006). Jasmine. In S. K. Bhattacharjee (Ed.), Advances in ornamental horticulture (Vol. 1, pp. 84–114). Jaipur: Pointer Publishers.Google Scholar
  4. 4.
    Anonymous (2011). United States Department of Agriculture (USDA). Species records of Jasminum. ARS, national genetic resources program. germplasm resources information network (GRIN) Retrieved 17th May, 2009. http://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl/407300.
  5. 5.
    Green, P., & Miller, D. (2009). The genus Jasminum in cultivation (pp. 110–113). Kew: Kew Publishing, Royal Botanic Gardens.Google Scholar
  6. 6.
    Abdoul-Latif, F., Edou, P., Eba, F., Mohamed, N., Ali, A., Djama, S., et al. (2010). Antimicrobial and antioxidant activities of essential oil and methanol extract of Jasminum sambac from Djibouti. African Journal of Plant Science, 4, 38–43.Google Scholar
  7. 7.
    Qian, W., Ge, S., & Houng, D. Y. (2001). Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theoretical and Applied Genetics., 102, 440–449.CrossRefGoogle Scholar
  8. 8.
    Bolaric, S., Barth, S., Melchinger, A. E., & Posselt, U. K. (2005). Genetic diversity in European perennial ryegrass cultivars investigated with RAPD markers. Plant Breed, 124, 161–166.CrossRefGoogle Scholar
  9. 9.
    Pivorienė, O., & Pašakinskienė, I. (2008). Genetic diversity assessment in perennial ryegrass and Festulolium by ISSR fingerprinting. Zemdirbyste, 95, 125–133.Google Scholar
  10. 10.
    Brickell, C. (2003). A–Z encyclopedia of garden plants (p. 1128). London: Dorling Kindersley Limited.Google Scholar
  11. 11.
    Hooker, J. D. (1882). Flora of British India (Vol. 3). London: L. Reeve and Co.Google Scholar
  12. 12.
    Engler, A., Prantl, K. (1897). Die Naturlichen Pflanzen Familien, IV. Teil, Leizpig. * Original not seen.Google Scholar
  13. 13.
    Gamble, J. S. (1923). Flora of the presidency of Madras, Part V (pp. 785–791). London: Adlard and Son.Google Scholar
  14. 14.
    Mahmood, M. A., Hafiz, I. A., Abbasi, N. A., & Faheem, M. (2013). Detection of genetic diversity in Jasminum species through RAPD techniques. International Journal of Agriculture and Biology, 15, 505–510.Google Scholar
  15. 15.
    Shekhar, S., Sriram, S., & Prasad, M. P. (2013). Genetic diversity determination of jasmine species by DNA fingerprinting using molecular markers. International Journal of Biotechnology and Bioengineering Research, 4, 335–340.Google Scholar
  16. 16.
    McCough, S. R., Chen, X., Panaud, O., Temnykh, S., Xu, Y., Cho, Y. G., et al. (1997). Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Molecular Biology, 35, 89–99.CrossRefGoogle Scholar
  17. 17.
    Mitchell, S. E., Kresovich, S., & Jester, C. A. (1997). Application of multiplex PCR and fluorescence-based, semi-automated allele sizing technology for genotyping plant genetic resources. Crop Science, 37, 617–624.CrossRefGoogle Scholar
  18. 18.
    Estoup, A., & Angers, B. (1998). Microsatellites and minisatellites for molecular ecology: Theoretical and empirical considerations. In G. R. Carvalho (Ed.), Advances in molecular ecology nato sciences series (pp. 55–86). Amsterdam: IOS Press.Google Scholar
  19. 19.
    Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20, 176–183.CrossRefGoogle Scholar
  20. 20.
    Shi, A., Kantartzi, S., Mmbaga, M., & Chen, P. (2010). Development of ISSR PCR markers for diversity study in dogwood (Cornus spp.). Agriculture and Biology Journal of North America, 1, 189–194.CrossRefGoogle Scholar
  21. 21.
    Pharmawati, M., Yan, G., & McFarlane, I. J. (2004). Application of RAPD and ISSR markers to analyze molecular relationships in Grevillea (Proteaceae). Australian Systematic Botany, 17, 49–61.CrossRefGoogle Scholar
  22. 22.
    Fang, D. Q., Roose, M. L., Krueger, R. R., & Federici, C. T. (1997). Fingerprinting trifoliate orange germplasm accessions with isozymes, RFLPs, and inter-simple sequences repeat markers. Theoretical and Applied Genetics, 95, 211–219.CrossRefGoogle Scholar
  23. 23.
    Van der Nest, M. A., Steenkamp, E. T., Wingfield, B. D., & Wingfield, M. J. (2000). Development of simple sequence repeat (SSR) markers in Eucalyptus from amplified inter-simple sequence repeats (ISSR). Plant Breeding, 119, 433–436.CrossRefGoogle Scholar
  24. 24.
    Raina, S. N., Rani, V., Kojima, T., Ogihara, Y., Singh, K. P., & Devarumath, R. M. (2001). RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome, 44, 763–772.CrossRefGoogle Scholar
  25. 25.
    Patzak, J. (2001). Comparison of RAPD, STS, ISSR and AFLP molecular methods used for assessment of genetic diversity in hop (Humulus lupulus L.). Euphytica, 121, 9–18.CrossRefGoogle Scholar
  26. 26.
    Ge, X. J., Yu, Y., Zhao, N. X., Chen, H. S., & Qi, W. Q. (2003). Genetic variation in the endangered inner magnolia endemic shrub Tetraena mongolica Maxim. (zygophyllacceae). Biological Conservation, 111, 427–434.CrossRefGoogle Scholar
  27. 27.
    Archak, S., Gaikwad, A. B., Gautam, D., Rao, E. V. V. B., Swamy, K. R. M., & Karihaloo, J. L. (2003). DNA finger-printing of Indian cashew (Anacardium occidentalle) varieties using RAPD and ISSR techniques. Euphytica, 230, 397–404.CrossRefGoogle Scholar
  28. 28.
    Monforte, A. J., Garcia-Mas, J., & Arús, P. (2003). Genetic variability in melon based on microsatellite variation. Plant Breeding, 122, 153–157.CrossRefGoogle Scholar
  29. 29.
    Adams, R. P., Schwarzbach, A. H., & Pandcy, R. N. (2003). The concordance of terpenoid, ISSR and RAPD markers, and its sequence data sets among genotypes an example from Juniperus. Biochemical Systematics and Ecology, 31, 325–381.Google Scholar
  30. 30.
    Salehi, M., Salehi, H., Niazi, A., & Ghobadi, C. (2014). Convergence of goals: Phylogenetical, morphological, and physiological characterization of tolerance to drought stress in tall fescue (Festuca arundinacea Schreb.). Molecular Biotechnology, 56, 248–257.CrossRefGoogle Scholar
  31. 31.
    Joshi, S. P., Gupta, V. S., Aggarwal, R. K., Ranjekar, P. K., & Brar, D. S. (2000). Genetic diversity and phylogenetic relationships as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theoretical and Applied Genetics, 100, 1311–1320.CrossRefGoogle Scholar
  32. 32.
    Kochieva, E. Z., Ryzhova, N. N., Khrapalova, I. A., & Pukhalskyi, V. A. (2002). Genetic diversity and phylogenetic relationships in the genus Lycopersicon (Tourn.) mill. as revealed by inter-simple sequence repeat (ISSR) analysis. Russian Journal of Genetics, 38, 958–966.CrossRefGoogle Scholar
  33. 33.
    Iruela, M., Rubio, J., Cubero, J. I., Gil, J., & Millan, T. (2002). Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theoretical and Applied Genetics, 104, 643–651.CrossRefGoogle Scholar
  34. 34.
    Rzepka-Plevneš, D., Smolik, M., & Tańska, K. (2006). Genetic similarity of chosen Syringa species determined by the ISSR-PCR technique. Dendrobiology, 56, 61–67.Google Scholar
  35. 35.
    Jonavicene, K., Paplauskiene, V., & Brazauskas, G. (2009). Isozymes and ISSR markers as a tool for the assessment of genetic diversity in Phleum spp. Zemdirbyste, 96, 47–57.Google Scholar
  36. 36.
    Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.Google Scholar
  37. 37.
    Noormohammadi, Z., Samadi-Molayousefi, H., & Sheidai, M. (2012). Intra-specific genetic diversity in wild olives (Olea europaea ssp. cuspidata) in Hormozgan Province, Iran. Genetics and Molecular Research, 11, 707–716.CrossRefGoogle Scholar
  38. 38.
    Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–220.Google Scholar
  39. 39.
    Rohlf, F. J. (1998). NTSYSpc: Numerical taxonomy and multivar-iate analysis system. Version 2.02. New York: Exeter Publications.Google Scholar
  40. 40.
    Gilbert, J. E., Lewis, R. V., Wilkinson, M. J., & Caligari, P. D. S. (1999). Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theoretical and Applied Genetics, 98, 1125–1131.CrossRefGoogle Scholar
  41. 41.
    Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., et al. (1996). The comparison of RFLP, RAPD, AFLP, and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2, 225–238.CrossRefGoogle Scholar
  42. 42.
    Weising, K., Nybon, H., Wolff, K., & Kahl, G. (2005). Applications of DNA fingerprinting in plant sciences. In Taylor & Francis (Ed.), DNA fingerprinting in plants. principles, methods and applications (2nd ed., pp. 235–276). London: CRC Press Boca Raton.CrossRefGoogle Scholar
  43. 43.
    Chadha, S., & Gopalakaishna, T. (2007). Comparative assessment of REMP and ISSR marker assays for genetic polymorphism studies in Magna porthegrisea. Current Science, 93, 688–692.Google Scholar
  44. 44.
    Peakall, R., & Smouse, P. (2006). GENALEX 6: Genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288–295.CrossRefGoogle Scholar
  45. 45.
    Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.Google Scholar
  46. 46.
    Langridge, P., & Chalmers, K. (2004). The principle: Identification and application of molecular markers. In T. Nagata, H. Lörz, & J. M. Widholm (Eds.), Biotechnology in agriculture and forestry (Vol. 55, pp. 3–22). Berlin: Springer.Google Scholar
  47. 47.
    Jabbarzadeh, Z., Khosh-khui, M., Salehi, H., & Saberivand, A. (2010). Inter simple sequence repeat (ISSR) markers as reproducible and specific tools for genetic diversity analysis of rose species. African Journal of Biotechnology, 9, 6091–6095.Google Scholar
  48. 48.
    Kubik, Ch., Sawkins, M., Meyer, W. A., & Gaut, B. S. (2001). Genetic diversity in seven perennial ryegrass (Lolium perenne L.) cultivars based on SSR markers. Crop Science, 41, 1565–1572.CrossRefGoogle Scholar
  49. 49.
    Camacho, F. J., & Liston, A. (2001). Population structure and genetic diversity of Botrychium pumicola (Ophioglossaceae) based on ISSR. American Journal of Botany, 88, 1065–1070.CrossRefGoogle Scholar
  50. 50.
    Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 314–331.Google Scholar
  51. 51.
    Anderson, J. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D., & Sorrels, M. E. (1993). Optimizing parental selection for genetic linkage maps. Genome, 36, 181–186.CrossRefGoogle Scholar
  52. 52.
    De Riek, J., Calsyn, E., Everaert, I., Van Bockstaele, E., & De Loose, M. (2001). AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theoretical and Applied Genetics, 103, 1254–1265.CrossRefGoogle Scholar
  53. 53.
    Pérez de la Torre, M., García, M., Heinz, R., & Escandón, A. (2012). Analysis of genetic variability by ISSR markers in Calibra choacaesia. Electronic Journal of Biotechnology, 15, 1–12.Google Scholar
  54. 54.
    Prevost, A., & Wilkinson, M. J. (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 98, 107–112.CrossRefGoogle Scholar
  55. 55.
    Veluswamy, P., Muthuswamy, S., & Thangaraj, T. (1973). Origin and distribution of jasmine. Indian Oriental Horticulture, 4, 45–65.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Masood Ghasemi Ghehsareh
    • 1
  • Hassan Salehi
    • 1
    Email author
  • Morteza Khosh-Khui
    • 1
  • Ali Niazi
    • 2
  1. 1.Department of Horticultural Science, College of AgricultureShiraz UniversityShirazIran
  2. 2.Institute of Biotechnology, College of AgricultureShiraz UniversityShirazIran

Personalised recommendations