Molecular Biotechnology

, Volume 56, Issue 12, pp 1069–1078

Dengue Virus E Glycoprotein Production in Transgenic Rice Callus

  • Tae-Geum Kim
  • Mi-Young Kim
  • Nguyen-Quang-Duc Tien
  • Nguyen-Xuan Huy
  • Moon-Sik Yang
Research

Abstract

Dengue is a disease caused by dengue virus and represents the most important arthropod-borne viral disease in humans. Dengue virus enters host cells via binding of envelope glycoprotein (E) to a receptor. In this study, plant expression vectors containing native and synthetic glycoprotein E genes (sE) modified based on plant-optimized codon usage and fused with an ER retention signal were constructed under control of the rice amylase 3D promoter expression system. Plant expression vectors were introduced into rice callus (Oryza sativa L. cv. Dongin) via particle bombardment-mediated transformation. The integration and expression of target genes were confirmed in the transgenic callus by genomic DNA PCR and Northern blot analyses, respectively. The plant-codon optimized sE gene with an ER retention signal showed high protein production levels based on Western blot analysis of approximately 18.5 ug/g dried calli weight by immunoblot-based densitometric analysis. These results suggest that the plant-codon optimized sE gene with an ER retention signal was highly produced in the transgenic rice callus.

Keywords

Dengue virus Envelope glycoprotein Rice amylase 3D promoter Gene optimization Plant-based vaccine 

References

  1. 1.
    Gubler, D. J. (2002). Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends in Microbiology, 10, 100–103.CrossRefGoogle Scholar
  2. 2.
    Shin, Y. J., Chong, Y. J., Yang, M. S., & Kwon, T. H. (2011). Production of recombinant human granulocyte macrophage-colony stimulating factor in rice cell suspension culture with a human-like N-glycan structure. Plant Biotechnology Journal, 9, 1109–1119.CrossRefGoogle Scholar
  3. 3.
    Kim, T. G., Kim, M. Y., Huy, N. X., Kim, S. H., & Yang, M. S. (2013). M cell-targeting ligand and consensus dengue virus envelope protein domain III fusion protein production in transgenic in transgenic rice calli. Molecular Biotechnology, 54, 880–887.CrossRefGoogle Scholar
  4. 4.
    Kim, N. S., Yu, H. Y., Chung, N. D., Shin, Y. J., Kwon, T. H., & Yang, M. S. (2011). Production of functional recombinant bovine trypsin in transgenic rice cell suspension cultures. Protein Expression and Purification, 76, 121–126.CrossRefGoogle Scholar
  5. 5.
    Pineo, C. B., Hitzeroth, I. I., & Rybicki, E. P. (2013). Immunogenic assessment of plant-produced human papillomavirus type 16 L1/L2 chimeras. Plant Biotechnology Journal, 11, 964–975.CrossRefGoogle Scholar
  6. 6.
    Avesani, L., Bortesi, L., Santi, L., Falrni, A., & Pezzotti, M. (2010). Plant-made pharmaceuticals for the prevention and treatment of autoimmune diseases: Where are we? Expert Rev. Vaccines, 9, 957–969.Google Scholar
  7. 7.
    Lessard, P. A., Kulaveerasingam, H., York, G. M., Strong, A., & Sinskey, A. J. (2002). Manipulating gene expression for the metabolic engineering of plants. Metabolic Engineering, 4, 67–79.CrossRefGoogle Scholar
  8. 8.
    Park, M., Kim, S. J., Vitale, A., & Hwang, I. (2004). Identification of the protein storage vacuole and protein targeting to the vacuole in leaf cells of three plants species. Plant Physiology, 134, 625–639.CrossRefGoogle Scholar
  9. 9.
    Hiwasa-Tanase, K., Nyarubona, M., Hirai, T., Kato, K., Ichikawa, T., & Ezura, H. (2011). High-level accumulation of recombinant miraculin protein in transgenic tomatoes expressing a synthetic miraculin gene with optimized codon usage terminated by the native miraculin terminator. Plant Cell Reports, 30, 113–124.CrossRefGoogle Scholar
  10. 10.
    Kang, T. J., Han, S. C., Jang, M. O., Kang, K. H., Jang, Y. S., & Yang, M. S. (2004). Enhanced expression of B-subunit of Escherichia coli heat-labile enetrotoxin in tobacco by optimization of coding sequence. Applied Biochemistry and Biotechnology, 117, 175–187.CrossRefGoogle Scholar
  11. 11.
    Li, X., Li, S., Lang, Z., Zhang, J., Zhu, L., & Huang, D. (2013). Chloroplast-targeted expression of the codon-optimized truncated cry1Ah gene in transgenic tobacco confers a high level of protection against insects. Plant Cell Reports, 32, 1299–1308.CrossRefGoogle Scholar
  12. 12.
    Gleba, Y., Klimyuk, V., & Marillonnet, S. (2007). Viral vectors for the expression of proteins in plants. Current Opinion in Biotechnology, 18, 134–141.CrossRefGoogle Scholar
  13. 13.
    Roehrig, J. T., Johnson, A. J., Hunt, A. R., Bolin, R. A., & Chu, M. C. (1990). Antibodies to dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation. Virology, 177, 668–675.CrossRefGoogle Scholar
  14. 14.
    Men, R., Wyatt, L., Tokimatsu, I., Arakaki, S., Shameem, G., Elkins, R., et al. (2000). Immunization of rhesus monkeys with a recombinant of modified vaccinia virus Ankara expressing a truncated envelope glycoprotein of dengue type 2 virus induced resistance to dengue type 2 virus challenge. Vaccine, 18, 3113–3122.CrossRefGoogle Scholar
  15. 15.
    Chin, J. F., Chu, J. J., & Ng, M. L. (2007). The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. Microbes and Infection, 9, 1–6.CrossRefGoogle Scholar
  16. 16.
    Crill, W. D., & Roehrig, J. T. (2001). Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to vero cells. Journal of Virology, 75, 7769–7773.CrossRefGoogle Scholar
  17. 17.
    de Alwis, R., Smith, S. A., Olivarez, N. P., Messer, W. B., Huynh, J. P., Wahala, W. M., et al. (2012). Identification of human neutralizing antibodies that bind to complex epitopes on dengue viriopns. Proceedings of the National Academy of Sciences of the USA, 109, 7439–7444.CrossRefGoogle Scholar
  18. 18.
    Kim, M. Y., Yang, M. S., & Kim, T. G. (2012). Expression of a consensus dengue virus envelope protein domain III in transgenic callus of rice. Plant Cell, Tissue and Organ Culture, 109, 509–515.CrossRefGoogle Scholar
  19. 19.
    Chen, P. W., Lu, C. A., Yu, T. S., Tseng, T. H., Wang, C. S., & Yu, S. M. (2002). Rice alpha-amylase transcriptional enhancers direct multiple mode regulation of promoters in transgenic rice. Journal of Biological Chemistry, 277, 13641–13649.CrossRefGoogle Scholar
  20. 20.
    Chu, C. C., Wang, C. C., & Sun, C. S. (1975). Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Scientia Sinica, 18, 659–668.Google Scholar
  21. 21.
    Chen, L. L., Marmey, P., Taylor, N. J., Brizard, J. P., Espinoza, C., D’Cruz, P., et al. (1998). Expression and inheritance of multiple transgenes in rice plants. Nature Biotechnology, 16, 1060–1064.CrossRefGoogle Scholar
  22. 22.
    Kim, T. G., Kim, B. G., Kim, M. Y., Choi, J. K., Jung, E. S., & Yang, M. S. (2010). Expression and immunogenicity of enterotoxigenic Escherichia coli heat-labile toxin B subunit in transgenic rice callus. Molecular Biotechnology, 44, 14–21.CrossRefGoogle Scholar
  23. 23.
    Arakawa, T., Chong, D. K., Merritt, J. L., & Langridge, W. H. (1997). Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Research, 6, 403–413.CrossRefGoogle Scholar
  24. 24.
    Rouwendal, G. J., Mendes, O., Wolbert, E. L., & Douwe de Boer, A. (1997). Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage. Plant Molecular Biology, 33, 989–999.CrossRefGoogle Scholar
  25. 25.
    Adang, M. J., Brody, M. S., Cardineau, G., Eagan, N., Roush, R. T., Shewmaker, C. K., et al. (1993). The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Molecular Biology, 21, 1131–1145.CrossRefGoogle Scholar
  26. 26.
    Perlak, F. J., Fuchs, R. L., Dean, D. A., McPherson, S. L., & Fischhoff, D. A. (1991). Modification of the coding sequence enhances plant expression of insect control protein genes. Proceedings of the National Academy of Sciences of the USA, 88, 3324–3328.CrossRefGoogle Scholar
  27. 27.
    Rigau-Perez, J. G., Clark, G. G., Gubler, D. J., Reiter, P., Sanders, E. J., & Vorndam, A. V. (1998). Dengue and dengue haemorrhagic fever. Lancet, 352, 971–977.CrossRefGoogle Scholar
  28. 28.
    Suggrue, R. J., Cui, T., Xu, Q., Fu, J., & Chan, Y. C. (1997). The production of recombinant dengue virus E protein using Escherichia coli and Pichia pastoris. Journal of Virological Methods, 69, 159–169.CrossRefGoogle Scholar
  29. 29.
    Wei, H. Y., Jiang, L. F., Xue, Y. H., Fang, D. Y., & Guo, H. Y. (2003). Secreted expression of dengue virus type 2 full-length envelope glycoprotein in Pichia pastoris. Journal of Virological Methods, 109, 17–23.CrossRefGoogle Scholar
  30. 30.
    Kelly, E. P., Greene, J. J., King, A. D., & Innis, B. L. (2000). Purified dengue 2 virus envelope glycoprotein aggregates produced by baculovirus are immunogenic in mice. Vaccine, 18, 2549–2559.CrossRefGoogle Scholar
  31. 31.
    Saejung, W., Fujiyama, K., Takasaki, T., Ito, M., Hori, K., Malasit, P., et al. (2007). Production of dengue 2 envelope domain III in plant using TMV-based vector system. Vaccine, 25, 6646–6654.CrossRefGoogle Scholar
  32. 32.
    Kim, M. Y., Yang, M. S., & Kim, T. G. (2009). Expression of dengue virus E glycoprotein domain III in non-nicotine transgenic tobacco plants. Biotechnology and Bioprocess Engineering, 14, 725–730.CrossRefGoogle Scholar
  33. 33.
    Kim, T. G., Kim, M. Y., & Yang, M. S. (2010). Cholera toxin B subunit-domain III of dengue virus envelope glycoprotein E fusion protein production in transgenic plants. Protein Expression and Purification, 74, 236–241.CrossRefGoogle Scholar
  34. 34.
    Huang, K. J., Yang, Y. C., Lin, Y. S., Huang, J. H., Liu, H. S., Yeh, T. M., et al. (2006). The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. Journal of Immunology, 176, 2825–2832.CrossRefGoogle Scholar
  35. 35.
    Leng, C. H., Liu, S. J., Tsai, J. P., Li, Y. S., Chen, M. Y., Liu, H. H., et al. (2009). A novel dengue vaccine candidate that induces cross-neutralizing antibodies and memory immunity. Microbes and Infection, 11, 288–295.CrossRefGoogle Scholar
  36. 36.
    Kim, T. G., Befus, N., & Langridge, W. H. R. (2004). Co-immunization with an HIV-1 Tat transduction peptide-rotavirus enterotoxin fusion protein stimulates a Th1 mucosal immune response in mice. Vaccine, 22, 431–438.CrossRefGoogle Scholar
  37. 37.
    Nochi, T., Takagi, H., Yuki, Y., Yang, L., Masumura, T., Mejima, M., et al. (2007). Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proceedings of the National Academy of Sciences of the USA, 104, 10986–010991.CrossRefGoogle Scholar
  38. 38.
    Yuki, Y., Mejima, M., Kurokawa, S., Hiroiwa, T., Takahashi, Y., Tokuhara, D., et al. (2013). Induction of toxin-specific neutralizing immunity by molecularly uniform rice-based oral cholera toxin B subunit vaccine without plant-associated sugar modification. Plant Biotechnology Journal, 11, 799–808.CrossRefGoogle Scholar
  39. 39.
    Obembe, O. O., Popoola, J. O., Leelavathi, S., & Reddy, S. V. (2011). Advances in plant molecular farming. Biotechnology Advances, 29, 210–222.CrossRefGoogle Scholar
  40. 40.
    Kaiser, J. (2008). Is the drought over for pharming? Science, 320, 473–475.CrossRefGoogle Scholar
  41. 41.
    Kim, M. Y., Chung, N. D., Yang, M. S., & Kim, T. G. (2013). Expression of a cholera toxin B subunit and consensus dengue virus envelope protein domain III fusion gene in transgenic rice callus. Plant Cell, Tissue and Organ Culture, 112, 311–320.CrossRefGoogle Scholar
  42. 42.
    Oszvald, M., Kang, T. J., Tomoskozi, S., Tamas, C., Tamas, L., Kim, T. G., et al. (2007). Expression of a synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit if Escherichia coli heat labile enterotoxin in rice endosperm. Molecular Biotechnology, 35, 215–260.CrossRefGoogle Scholar
  43. 43.
    Huy, N. X., Kim, S. H., Yang, M. S., & Kim, T. G. (2012). Immunogenicity of a neutralizing epitope from porcine epidemic diarrhea virus: M cell targeting ligand fusion protein expressed in transgenic rice calli. Plant Cell Reports, 31, 1933–1942.CrossRefGoogle Scholar
  44. 44.
    Lau, O. S., & Sun, S. S. (2009). Plant seeds as bioreactors for recombinant protein production. Biotechnology Advances, 27, 1015–1022.CrossRefGoogle Scholar
  45. 45.
    Takagi, H., Hiroi, T., Yang, L., Tada, Y., Yuki, Y., Takamura, K., et al. (2005). A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibition of Th2-mediated IgE responses. Proceedings of the National Academy of Sciences of the USA, 102, 17525–17530.CrossRefGoogle Scholar
  46. 46.
    Wu, J., Yu, L., Li, L., Hu, J., Zho, J., & Zhou, X. (2007). Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens. Plant Biotechnology Journal, 5, 570–578.CrossRefGoogle Scholar
  47. 47.
    Matsumoto, Y., Suzuki, S., Nozoye, T., Yamakawa, T., Takashima, Y., Arakawa, T., et al. (2009). Oral immunogenicity and protective efficacy in mice of transgenic rice plants producing a vaccine candidate antigen (As16) of Ascaris suum fused with cholera toxin B subunit. Transgenic Research, 18, 185–192.CrossRefGoogle Scholar
  48. 48.
    Nochi, T., Yuki, Y., Katakai, Y., Shibata, H., Tokuhara, D., Mejima, M., et al. (2009). A rice-based oral cholera vaccine induces macaque-specific systemic neutralizing antibodies but does not influence pre-existing intestinal immunity. Journal of Immunology, 183, 6538–6544.CrossRefGoogle Scholar
  49. 49.
    Kim, S. H., Jung, D. I., Yang, I. Y., Jang, S. H., Kim, J., Truong, T. T., et al. (2013). Application of an M-cell-targeting ligand for oral vaccination induces efficient systemic and mucosal immune responses against a viral antigen. International Immunology, 25, 623–632.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Tae-Geum Kim
    • 1
    • 2
  • Mi-Young Kim
    • 3
  • Nguyen-Quang-Duc Tien
    • 1
    • 3
  • Nguyen-Xuan Huy
    • 4
  • Moon-Sik Yang
    • 1
    • 3
  1. 1.Department of Bioactive Material Sciences and Research Center of Bioactive MaterialsChonbuk National UniversityJeollabuk-doRepublic of Korea
  2. 2.Industry-Academy-Institute Cooperation Center of Chonbuk National UniversityJeongeupVietnam
  3. 3.Department of Molecular Biology and Institute for Genetics and Molecular BiologyChonbuk National UniversityJeonjuRepublic of Korea
  4. 4.Department of Techno-pedagogyHue University’s College of EducationHue CityVietnam

Personalised recommendations