Molecular Biotechnology

, Volume 56, Issue 11, pp 1021–1031 | Cite as

Translational Fusion and Redirection to Thylakoid Lumen as Strategies to Enhance Accumulation of Human Papillomavirus E7 Antigen in Tobacco Chloroplasts

  • Mauro Morgenfeld
  • Ezequiel Lentz
  • María Eugenia Segretin
  • E. Federico Alfano
  • Fernando Bravo-Almonacid


Human papillomavirus (HPV) is the causal agent of cervical cancer, one of the most common causes of death in women worldwide, and its E7 antigen is the major candidate for a therapeutic vaccine. The large scale production of E7 by molecular farming that would lead to the development of a safe and inexpensive vaccine is impaired by its low accumulation level in the plant cell. To enhance antigen production in the plastids, two alternative strategies were carried out: the expression of E7 as a translational fusion to β-glucuronidase enzyme and redirection of E7 into the thylakoid lumen. The use of the β-glucuronidase as a partner protein turned out to be a successful strategy, antigen expression levels were enhanced between 30 and 40 times relative to unfused E7. Moreover, best accumulation, albeit at a high metabolic cost that compromised biomass production, was obtained redirecting E7 into the thylakoid lumen by the incorporation of the N-terminal transit peptide, Str. Following this approach lumenal E7 production exceeded the stromal by two orders of magnitude. Our results highlight the relevance of exploring different strategies to improve recombinant protein stability for certain transgenes in order to exploit potential advantages of recombinant protein accumulation in chloroplasts.


Human papillomavirus E7 antigen Transplastomic tobacco Fusion protein Thylakoid translocation Molecular farming 


  1. 1.
    Sharma, A. K., & Sharma, M. K. (2009). Plants as bioreactors: Recent developments and emerging opportunities. Biotechnology Advances, 27, 811–832.CrossRefGoogle Scholar
  2. 2.
    Obembe, O. O., Popoola, J. O., Leelavathi, S., & Reddy, S. V. (2011). Advances in plant molecular farming. Biotechnology Advances, 29, 210–222.CrossRefGoogle Scholar
  3. 3.
    Maliga, P., & Bock, R. (2011). Plastid biotechnology: Food, fuel, and medicine for the 21st century. Plant Physiology, 155, 1501–1510.CrossRefGoogle Scholar
  4. 4.
    Scotti, N., Rigano, M. M., & Cardi, T. (2012). Production of foreign proteins using plastid transformation. Biotechnology Advances, 30, 387–397.CrossRefGoogle Scholar
  5. 5.
    Daniell, H. (2006). Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnology Journal, 1, 1071–1079.CrossRefGoogle Scholar
  6. 6.
    Bock, R., & Khan, M. S. (2004). Taming plastids for a green future. Trends in Biotechnology, 22, 311–318.CrossRefGoogle Scholar
  7. 7.
    Maliga, P. (2004). Plastid transformation in higher plants. Annual Review of Plant Biology, 55, 289–313.CrossRefGoogle Scholar
  8. 8.
    Sakamoto, W. (2006). Protein degradation machineries in plastids. Annual Review of Plant Biology, 57, 599–621.CrossRefGoogle Scholar
  9. 9.
    Castellsague, X. (2008). Natural history and epidemiology of HPV infection and cervical cancer. Gynecologic Oncology, 110, S4–S7.CrossRefGoogle Scholar
  10. 10.
    Van Kriekinge, G., Castellsague, X., Cibula, D., & Demarteau, N. (2014). Estimation of the potential overall impact of human papillomavirus vaccination on cervical cancer cases and deaths. Vaccine, 32, 733–739.CrossRefGoogle Scholar
  11. 11.
    Koutsky, L. A., Ault, K. A., Wheeler, C. M., Brown, D. R., Barr, E., Alvarez, F. B., et al. (2002). A controlled trial of a human papillomavirus type 16 vaccine. New England Journal of Medicine, 347, 1645–1651.CrossRefGoogle Scholar
  12. 12.
    Paolini, F., Massa, S., Manni, I., Franconi, R., & Venuti, A. (2013). Immunotherapy in new pre-clinical models of HPV-associated oral cancers. Human Vaccines & Immunotherapeutics, 9, 534–543.CrossRefGoogle Scholar
  13. 13.
    Hallez, S., Simon, P., Maudoux, F., Doyen, J., Noel, J. C., Beliard, A., et al. (2004). Phase I/II trial of immunogenicity of a human papillomavirus (HPV) type 16 E7 protein-based vaccine in women with oncogenic HPV-positive cervical intraepithelial neoplasia. Cancer Immunology, Immunotherapy, 53, 642–650.CrossRefGoogle Scholar
  14. 14.
    Trimble, C. L., Peng, S., Kos, F., Gravitt, P., Viscidi, R., Sugar, E., et al. (2009). A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clinical Cancer Research, 15, 361–367.CrossRefGoogle Scholar
  15. 15.
    Smotkin, D., & Wettstein, F. O. (1987). The major human papillomavirus protein in cervical cancers is a cytoplasmic phosphoprotein. Journal of Virology, 61, 1686–1689.Google Scholar
  16. 16.
    Alonso, L. G., Garcia-Alai, M. M., Nadra, A. D., Lapena, A. N., Almeida, F. L., Gualfetti, P., et al. (2002). High-risk (HPV16) human papillomavirus E7 oncoprotein is highly stable and extended, with conformational transitions that could explain its multiple cellular binding partners. Biochemistry, 41, 10510–10518.CrossRefGoogle Scholar
  17. 17.
    Morgenfeld, M., Segretin, M. E., Wirth, S., Lentz, E., Zelada, A., Mentaberry, A., et al. (2009). Potato virus X coat protein fusion to human papillomavirus 16 E7 oncoprotein enhance antigen stability and accumulation in tobacco chloroplast. Molecular Biotechnology, 43, 243–249.CrossRefGoogle Scholar
  18. 18.
    Demurtas, O. C., Massa, S., Ferrante, P., Venuti, A., Franconi, R., & Giuliano, G. (2013). A Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS ONE, 8, e61473.CrossRefGoogle Scholar
  19. 19.
    Uversky, V. N., Roman, A., Oldfield, C. J., & Dunker, A. K. (2006). Protein intrinsic disorder and human papillomaviruses: Increased amount of disorder in E6 and E7 oncoproteins from high risk HPVs. Journal of Proteome Research, 5, 1829–1842.CrossRefGoogle Scholar
  20. 20.
    Staub, J. M., Garcia, B., Graves, J., Hajdukiewicz, P. T., Hunter, P., Nehra, N., et al. (2000). High-yield production of a human therapeutic protein in tobacco chloroplasts. Nature Biotechnology, 18, 333–338.CrossRefGoogle Scholar
  21. 21.
    Ye, G. N., Hajdukiewicz, P. T., Broyles, D., Rodriguez, D., Xu, C. W., Nehra, N., et al. (2001). Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. The Plant Journal, 25, 261–270.CrossRefGoogle Scholar
  22. 22.
    Mishra, S., Yadav, D. K., & Tuli, R. (2006). Ubiquitin fusion enhances cholera toxin B subunit expression in transgenic plants and the plant-expressed protein binds GM1 receptors more efficiently. Journal of Biotechnology, 127, 95–108.CrossRefGoogle Scholar
  23. 23.
    Elghabi, Z., Karcher, D., Zhou, F., Ruf, S., & Bock, R. (2011). Optimization of the expression of the HIV fusion inhibitor cyanovirin-N from the tobacco plastid genome. Plant Biotechnology Journal, 9, 599–608.CrossRefGoogle Scholar
  24. 24.
    Wirth, S., Segretin, M. E., Mentaberry, A., & Bravo-Almonacid, F. (2006). Accumulation of hEGF and hEGF-fusion proteins in chloroplast-transformed tobacco plants is higher in the dark than in the light. Journal of Biotechnology, 125, 159–172.CrossRefGoogle Scholar
  25. 25.
    Schurmann, P., & Jacquot, J. P. (2000). Plant thioredoxin systems revisited. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 371–400.CrossRefGoogle Scholar
  26. 26.
    Reddie, K. G., & Carroll, K. S. (2008). Expanding the functional diversity of proteins through cysteine oxidation. Current Opinion in Chemical Biology, 12, 746–754.CrossRefGoogle Scholar
  27. 27.
    Conway, M. J., Cruz, L., Alam, S., Christensen, N. D., & Meyers, C. (2011). Differentiation-dependent interpentameric disulfide bond stabilizes native human papillomavirus type 16. PLoS ONE, 6, e22427.CrossRefGoogle Scholar
  28. 28.
    Marques, J. P., Dudeck, I., & Klosgen, R. B. (2003). Targeting of EGFP chimeras within chloroplasts. Molecular Genetics and Genomics, 269, 381–387.CrossRefGoogle Scholar
  29. 29.
    Albiniak, A. M., Baglieri, J., & Robinson, C. (2012). Targeting of lumenal proteins across the thylakoid membrane. Journal of Experimental Botany, 63, 1689–1698.CrossRefGoogle Scholar
  30. 30.
    Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal, 6, 3901–3907.Google Scholar
  31. 31.
    Svab, Z., Hajdukiewicz, P., & Maliga, P. (1990). Stable transformation of plastids in higher plants. Proceedings of the National Academy of Sciences of the United States of America, 87, 8526–8530.CrossRefGoogle Scholar
  32. 32.
    Dellaporta, S. L., Chomet, P. S., Mottinger, J. P., Wood, J. A., Yu, S. M., & Hicks, J. B. (1984). Endogenous transposable elements associated with virus infection in maize. Cold Spring Harbor Symposia on Quantitative Biology, 49, 321–328.CrossRefGoogle Scholar
  33. 33.
    Church, G. M., & Gilbert, W. (1984). Genomic sequencing. Proceedings of the National Academy of Sciences of the United States of America, 81, 1991–1995.CrossRefGoogle Scholar
  34. 34.
    Ruf, S., Biehler, K., & Bock, R. (2000). A small chloroplast-encoded protein as a novel architectural component of the light-harvesting antenna. Journal of Cell Biology, 149, 369–378.CrossRefGoogle Scholar
  35. 35.
    Ayliffe, M. A., Scott, N. S., & Timmis, J. N. (1998). Analysis of plastid DNA-like sequences within the nuclear genomes of higher plants. Molecular Biology and Evolution, 15, 738–745.CrossRefGoogle Scholar
  36. 36.
    Nakazono, M., & Hirai, A. (1993). Identification of the entire set of transferred chloroplast DNA sequences in the mitochondrial genome of rice. Molecular and General Genetics, 236, 341–346.CrossRefGoogle Scholar
  37. 37.
    Stern, D. B., & Lonsdale, D. M. (1982). Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature, 299, 698–702.CrossRefGoogle Scholar
  38. 38.
    Rogalski, M., Ruf, S., & Bock, R. (2006). Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Research, 34, 4537–4545.CrossRefGoogle Scholar
  39. 39.
    Giorgi, C., Franconi, R., & Rybicki, E. P. (2010). Human papillomavirus vaccines in plants. Expert Review of Vaccines, 9, 913–924.CrossRefGoogle Scholar
  40. 40.
    De Marchis, F., Pompa, A., & Bellucci, M. (2012). Plastid proteostasis and heterologous protein accumulation in transplastomic plants. Plant Physiology, 160, 571–581.CrossRefGoogle Scholar
  41. 41.
    Chemes, L. B., Glavina, J., Alonso, L. G., Marino-Buslje, C., de Prat-Gay, G., & Sanchez, I. E. (2012). Sequence evolution of the intrinsically disordered and globular domains of a model viral oncoprotein. PLoS ONE, 7, e47661.CrossRefGoogle Scholar
  42. 42.
    van Rooijen, G. J., & Moloney, M. M. (1995). Plant seed oil-bodies as carriers for foreign proteins. Biotechnology (New York), 13, 72–77.CrossRefGoogle Scholar
  43. 43.
    Hondred, D., Walker, J. M., Mathews, D. E., & Vierstra, R. D. (1999). Use of ubiquitin fusions to augment protein expression in transgenic plants. Plant Physiology, 119, 713–724.CrossRefGoogle Scholar
  44. 44.
    Patel, J., Zhu, H., Menassa, R., Gyenis, L., Richman, A., & Brandle, J. (2007). Elastin-like polypeptide fusions enhance the accumulation of recombinant proteins in tobacco leaves. Transgenic Research, 16, 239–249.CrossRefGoogle Scholar
  45. 45.
    Herz, S., Fussl, M., Steiger, S., & Koop, H. U. (2005). Development of novel types of plastid transformation vectors and evaluation of factors controlling expression. Transgenic Research, 14, 969–982.CrossRefGoogle Scholar
  46. 46.
    Gray, B. N., Ahner, B. A., & Hanson, M. R. (2009). High-level bacterial cellulase accumulation in chloroplast-transformed tobacco mediated by downstream box fusions. Biotechnology and Bioengineering, 102, 1045–1054.CrossRefGoogle Scholar
  47. 47.
    Lentz, E. M., Garaicoechea, L., Alfano, E. F., Parreno, V., Wigdorovitz, A., & Bravo-Almonacid, F. F. (2012). Translational fusion and redirection to thylakoid lumen as strategies to improve the accumulation of a camelid antibody fragment in transplastomic tobacco. Planta, 236, 703–714.CrossRefGoogle Scholar
  48. 48.
    Segretin, M. E., Lentz, E. M., Wirth, S. A., Morgenfeld, M. M., & Bravo-Almonacid, F. F. (2012). Transformation of Solanum tuberosum plastids allows high expression levels of beta-glucuronidase both in leaves and microtubers developed in vitro. Planta, 235, 807–818.CrossRefGoogle Scholar
  49. 49.
    Lentz, E. M., Segretin, M. E., Morgenfeld, M. M., Wirth, S. A., Dus Santos, M. J., Mozgovoj, M. V., et al. (2010). High expression level of a foot and mouth disease virus epitope in tobacco transplastomic plants. Planta, 231, 387–395.CrossRefGoogle Scholar
  50. 50.
    Marques, J. P., Schattat, M. H., Hause, G., Dudeck, I., & Klosgen, R. B. (2004). In vivo transport of folded EGFP by the DeltapH/TAT-dependent pathway in chloroplasts of Arabidopsis thaliana. Journal of Experimental Botany, 55, 1697–1706.CrossRefGoogle Scholar
  51. 51.
    Scotti, N., & Cardi, T. (2014). Transgene-induced pleiotropic effects in transplastomic plants. Biotechnology Letters, 36, 229–239.CrossRefGoogle Scholar
  52. 52.
    Hennig, A., Bonfig, K., Roitsch, T., & Warzecha, H. (2007). Expression of the recombinant bacterial outer surface protein A in tobacco chloroplasts leads to thylakoid localization and loss of photosynthesis. FEBS Journal, 274, 5749–5758.CrossRefGoogle Scholar
  53. 53.
    Oey, M., Lohse, M., Kreikemeyer, B., & Bock, R. (2009). Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. The Plant Journal, 57, 436–445.CrossRefGoogle Scholar
  54. 54.
    Bally, J., Nadai, M., Vitel, M., Rolland, A., Dumain, R., & Dubald, M. (2009). Plant physiological adaptations to the massive foreign protein synthesis occurring in recombinant chloroplasts. Plant Physiology, 150, 1474–1481.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mauro Morgenfeld
    • 1
    • 3
  • Ezequiel Lentz
    • 1
  • María Eugenia Segretin
    • 1
    • 3
  • E. Federico Alfano
    • 1
  • Fernando Bravo-Almonacid
    • 1
    • 2
  1. 1.Instituto de Ingeniería Genética y Biología Molecular “Dr, Hector Torres” (INGEBI-CONICET)Ciudad Autónoma de Buenos AiresArgentina
  2. 2.Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesBernalArgentina
  3. 3.Departamento de Fisiología, Biología Molecular y Celular (FCEN-UBA)Ciudad UniversitariaArgentina

Personalised recommendations