Molecular Biotechnology

, Volume 56, Issue 8, pp 681–688 | Cite as

Applications of TALENs and CRISPR/Cas9 in Human Cells and Their Potentials for Gene Therapy

Reviews

Abstract

The newly developed TALENs and emerging CRISPR/Cas9 have spurred interests in the field of genome engineering because of their ease of customization and high-efficient site-specific cleavages. Although these novel technologies have been successfully used in many types of cells, it is of great importance to apply them in human-derived cells to further observe and evaluate their clinical potentials in gene therapy. Here, we review the working mechanism of TALEN and CRISPR/Cas9, their effectiveness and specificity in human cells, and current methods to enhance efficiency and reduce off-target effects. Besides, CCR5 gene was chosen as a target example to illustrate their clinical potentials. Finally, some questions are raised for future research and for researchers to consider when making a proper choice bases on different purposes.

Keywords

TALENs CRISPR/Cas9 Genome editing Gene therapy CCR5 

References

  1. 1.
    Verma, I. M., & Weitzman, M. D. (2005). Gene therapy: Twenty-first century medicine. Annual Review of Biochemistry, 74, 711–738.CrossRefGoogle Scholar
  2. 2.
    Perez, E. E., Wang, J., Miller, J. C., Jouvenot, Y., Kim, K. A., Liu, O., et al. (2008). Establishment of HIV-1 resistance in CD4+T cells by genome editing using zinc-finger nucleases. Nature Biotechnology, 26, 808–816.CrossRefGoogle Scholar
  3. 3.
    Li, L., Krymskaya, L., Wang, J., Henley, J., Rao, A., Cao, L.-F., et al. (2013). Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Molecular Therapy, 21, 1259–1269.Google Scholar
  4. 4.
    Mussolino, C., Morbitzer, R., Lütge, F., Dannemann, N., Lahaye, T., & Cathomen, T. (2011). A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Research, 39, 9283–9293.CrossRefGoogle Scholar
  5. 5.
    Ding, Q., Lee, Y.-K., Schaefer, E. A., Peters, D. T., Veres, A., Kim, K., et al. (2012). A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell, 12, 238–251.Google Scholar
  6. 6.
    Takata, M., Sasaki, M. S., Sonoda, E., Morrison, C., Hashimoto, M., Utsumi, H., et al. (1998). Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. The EMBO Journal, 17, 5497–5508.CrossRefGoogle Scholar
  7. 7.
    Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., et al. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186, 757–761.CrossRefGoogle Scholar
  8. 8.
    Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., et al. (2010). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29, 143–148.CrossRefGoogle Scholar
  9. 9.
    Hockemeyer, D., Wang, H., Kiani, S., Lai, C. S., Gao, Q., Cassady, J. P., et al. (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 29, 731–734.CrossRefGoogle Scholar
  10. 10.
    Li, T., Huang, S., Jiang, W. Z., Wright, D., Spalding, M. H., Weeks, D. P., et al. (2011). TAL nucleases (TALNs): Hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Research, 39, 359–372.CrossRefGoogle Scholar
  11. 11.
    Santiago, Y., Chan, E., Liu, P.-Q., Orlando, S., Zhang, L., Urnov, F. D., et al. (2008). Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proceedings of the National Academy of Sciences, 105, 5809–5814.CrossRefGoogle Scholar
  12. 12.
    Bogdanove, A. J., & Voytas, D. F. (2011). TAL effectors: Customizable proteins for DNA targeting. Science, 333, 1843–1846.CrossRefGoogle Scholar
  13. 13.
    Moehle, E. A., Rock, J. M., Lee, Y.-L., Jouvenot, Y., DeKelver, R. C., Gregory, P. D., et al. (2007). Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proceedings of the National Academy of Sciences, 104, 3055–3060.CrossRefGoogle Scholar
  14. 14.
    Gaj, T., Gersbach, C. A., & Barbas III, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31, 397–405.Google Scholar
  15. 15.
    Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., et al. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509–1512.CrossRefGoogle Scholar
  16. 16.
    Bogdanove, A. J., Schornack, S., & Lahaye, T. (2010). TAL effectors: Finding plant genes for disease and defense. Current Opinion in Plant Biology, 13, 394–401.CrossRefGoogle Scholar
  17. 17.
    Moscou, M. J., & Bogdanove, A. J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science, 326, 1501.CrossRefGoogle Scholar
  18. 18.
    Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169, 5429–5433.Google Scholar
  19. 19.
    Horvath, P., & Barrangou, R. (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science, 327, 167–170.CrossRefGoogle Scholar
  20. 20.
    Bhaya, D., Davison, M., & Barrangou, R. (2011). CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation. Annual Review of Genetics, 45, 273–297.CrossRefGoogle Scholar
  21. 21.
    Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., et al. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 31, 227–229.CrossRefGoogle Scholar
  22. 22.
    Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31, 233–239.CrossRefGoogle Scholar
  23. 23.
    Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., et al. (2013). RNA-guided human genome engineering via Cas9. Science, 339, 823–826.CrossRefGoogle Scholar
  24. 24.
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.CrossRefGoogle Scholar
  25. 25.
    Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., et al. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183.CrossRefGoogle Scholar
  26. 26.
    Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., et al. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154, 442–451.CrossRefGoogle Scholar
  27. 27.
    Stroud, D. A., Formosa, L. E., Wijeyeratne, X. W., Nguyen, T. N., & Ryan, M. T. (2013). Gene knockout using transcription activator-like effector nucleases (TALENs) reveals that human NDUFA9 protein is essential for stabilizing the junction between membrane and matrix arms of complex I. Journal of Biological Chemistry, 288, 1685–1690.CrossRefGoogle Scholar
  28. 28.
    Hu, R., Wallace, J., Dahlem, T. J., Grunwald, D. J., & O’Connell, R. M. (2013). Targeting human MicroRNA genes using engineered Tal-effector nucleases (TALENs). PLoS ONE, 8, e63074.CrossRefGoogle Scholar
  29. 29.
    Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., & Doudna, J. (2013). RNA-programmed genome editing in human cells. Elife, 2, e00471.Google Scholar
  30. 30.
    Cho, S. W., Kim, S., Kim, J. M., & Kim, J.-S. (2013). Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology, 31, 230–232.Google Scholar
  31. 31.
    Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.CrossRefGoogle Scholar
  32. 32.
    Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., et al. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31, 822–826.CrossRefGoogle Scholar
  33. 33.
    Kim, Y., Kweon, J., Kim, A., Chon, J. K., Yoo, J. Y., Kim, H. J., et al. (2013). A library of TAL effector nucleases spanning the human genome. Nature Biotechnology, 31, 251–258.Google Scholar
  34. 34.
    Ding, Q., Regan, S. N., Xia, Y., Oostrom, L. A., Cowan, C. A., & Musunuru, K. (2013). Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell, 12, 393–394.CrossRefGoogle Scholar
  35. 35.
    Wei, C., Liu, J., Yu, Z., Zhang, B., Gao, G., & Jiao, R. (2013). TALEN or Cas9–rapid, efficient and specific choices for genome modifications. Journal of Genetics and Genomics, 40, 281–289.CrossRefGoogle Scholar
  36. 36.
    Yang, L., Guell, M., Byrne, S., Yang, J. L., De Los Angeles, A., Mali, P., et al. (2013). Optimization of scarless human stem cell genome editing. Nucleic Acids Research, 41, 9049–9061.CrossRefGoogle Scholar
  37. 37.
    Streubel, J., Blücher, C., Landgraf, A., & Boch, J. (2012). TAL effector RVD specificities and efficiencies. Nature Biotechnology, 30, 593–595.CrossRefGoogle Scholar
  38. 38.
    Sakuma, T., Ochiai, H., Kaneko, T., Mashimo, T., Tokumasu, D., Sakane, Y., et al. (2013). Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Scientific Reports, 3, 3379.Google Scholar
  39. 39.
    Wang, T., Wei, J. J., Sabatini, D. M., & Lander, E. S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343, 80–84.CrossRefGoogle Scholar
  40. 40.
    Kim, E., Kim, S., Kim, D. H., Choi, B.-S., Choi, I.-Y., & Kim, J.-S. (2012). Precision genome engineering with programmable DNA-nicking enzymes. Genome Research, 22, 1327–1333.CrossRefGoogle Scholar
  41. 41.
    Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31, 827–832.CrossRefGoogle Scholar
  42. 42.
    Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8, 2281–2308.CrossRefGoogle Scholar
  43. 43.
    Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S., et al. (2013). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Research, 24, 132–141.Google Scholar
  44. 44.
    Ran, F., Hsu, P. D., Lin, C.-Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., et al. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154, 1380–1389.CrossRefGoogle Scholar
  45. 45.
    Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A., & Liu, D. R. (2013). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology, 31, 839–843.CrossRefGoogle Scholar
  46. 46.
    Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M., & Joung, J. K. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 32, 279–284.Google Scholar
  47. 47.
    Smith, A. M., Takeuchi, R., Pellenz, S., Davis, L., Maizels, N., Monnat, R. J., et al. (2009). Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proceedings of the National Academy of Sciences, 106, 5099–5104.CrossRefGoogle Scholar
  48. 48.
    Cade, L., Reyon, D., Hwang, W. Y., Tsai, S. Q., Patel, S., Khayter, C., et al. (2012). Highly efficient generation of heritable zebrafish gene mutations using homo-and heterodimeric TALENs. Nucleic Acids Research, 40, 8001–8010.CrossRefGoogle Scholar
  49. 49.
    Mali, P., Aach, J., Stranges, P. B., Esvelt, K. M., Moosburner, M., Kosuri, S., et al. (2013). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology, 31, 833–838.CrossRefGoogle Scholar
  50. 50.
    Pan, Y., Xiao, L., Li, A. S., Zhang, X., Sirois, P., Zhang, J., et al. (2013). Biological and biomedical applications of engineered nucleases. Molecular Biotechnology, 55, 54–62.CrossRefGoogle Scholar
  51. 51.
    Bloom, K., Ely, A., Mussolino, C., Cathomen, T., & Arbuthnot, P. (2013). Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Molecular Therapy, 21, 1889–1897.CrossRefGoogle Scholar
  52. 52.
    Ousterout, D. G., Perez-Pinera, P., Thakore, P. I., Kabadi, A. M., Brown, M. T., Qin, X., et al. (2013). Reading frame correction by targeted genome editing restores dystrophin expression in cells from duchenne muscular dystrophy patients. Molecular Therapy, 21, 1718–1726.CrossRefGoogle Scholar
  53. 53.
    Osborn, M. J., Starker, C. G., McElroy, A. N., Webber, B. R., Riddle, M. J., Xia, L., et al. (2013). TALEN-based gene correction for epidermolysis bullosa. Molecular Therapy, 21, 1151–1159.CrossRefGoogle Scholar
  54. 54.
    Xu, L., Zhao, P., Mariano, A., Han, R. (2013). Targeted myostatin gene editing in multiple mammalian species directed by a single pair of TALE nucleases. Molecular Therapy—Nucleic Acids, 2, 112.Google Scholar
  55. 55.
    Bacman, S. R., Williams, S. L., Pinto, M., Peralta, S., & Moraes, C. T. (2013). Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nature Medicine, 19, 1111–1113.CrossRefGoogle Scholar
  56. 56.
    Schwank, G., Koo, B.-K., Sasselli, V., Dekkers, J. F., Heo, I., Demircan, T., et al. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13, 653–658.CrossRefGoogle Scholar
  57. 57.
    Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P. D., et al. (1996). The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell, 85, 1135–1148.CrossRefGoogle Scholar
  58. 58.
    Liu, R., Paxton, W. A., Choe, S., Ceradini, D., Martin, S. R., Horuk, R., et al. (1996). Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell, 86, 367–377.CrossRefGoogle Scholar
  59. 59.
    Kim, H. J., Lee, H. J., Kim, H., Cho, S. W., & Kim, J.-S. (2009). Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Research, 19, 1279–1288.CrossRefGoogle Scholar
  60. 60.
    Sakuma, T., Hosoi, S., Woltjen, K., Suzuki, K. I., Kashiwagi, K., Wada, H., et al. (2013). Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes to Cells, 18, 315–326.Google Scholar
  61. 61.
    Doench, G., & Zhang, F. (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 343, 84–87.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Hematopoietic Stem Cell TransplantationAffiliated Hospital of Academy of Military Medical SciencesBeijingPeople’s Republic of China
  2. 2.Cell and Gene Therapy CenterAcademy of Military Medical SciencesBeijingPeople’s Republic of China

Personalised recommendations