Skip to main content
Log in

The Development of Monoclonal Antibodies to the secA Protein of Cape St. Paul Wilt Disease Phytoplasma and Their Evaluation as a Diagnostic Tool

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Partial recombinant secA proteins were produced from six different phytoplasma isolates representing five 16Sr groups and the expressed, purified recombinant (partial secA) protein from Cape St. Paul wilt disease phytoplasma (CSPWD, 16SrXXII) was used to immunise mice. Monoclonal antibodies (mAbs) were selected by screening hybridoma supernatants for binding to the recombinant proteins. To characterise the binding to proteins from different phytoplasmas, the antibodies were screened by ELISA and western blotting, and epitope mapping was undertaken. Eight different mAbs with varying degrees of specificity against recombinant proteins from different phytoplasma groups were selected. Western blotting revealed that the mAbs bind to proteins in infected plant material, two of which were specific for phytoplasmas. ELISA testing of infected material, however, gave negative results suggesting that either secA was not expressed at sufficiently high levels, or conformational changes of the reagents adversely affected detection. This work has shown that the phytoplasma secA gene is not a suitable antibody target for routine detection, but has illustrated proof of principle for the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee, I.-M., Gundersen-Rindal, D. E., & Bertaccini, A. (1998). Phytoplasma: ecology and genomic diversity. Phytopathology, 88, 1359–1366.

    Article  CAS  Google Scholar 

  2. IRPCM Phytoplasma/Spiroplasma Working Team—Phytoplasma taxonomy group. (2004). ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology, 54, 1243–1255.

    Article  Google Scholar 

  3. Firrao, G., Gibb, K., & Streten, C. (2005). Short taxonomic guide to the genus ‘Candidatus phytoplasma’. Journal of Plant Pathology, 87, 249–263.

    Google Scholar 

  4. Schneider, B., Gibb, K. S., & Seemüller, E. (1997). Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. Microbiology, 143, 3381–3389.

    Article  CAS  Google Scholar 

  5. Hodgetts, J., Boonham, N., Mumford, R., Harrison, N., & Dickinson, M. (2008). Phytoplasma phylogenetics based on analysis of the secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. International Journal of Systematic and Evolutionary Microbiology, 58, 1826–1837.

    Article  CAS  Google Scholar 

  6. Lee, I.-M., Zhao, Y., & Bottner, K. D. (2006). SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Molecular and Cellular Probes, 20, 87–91.

    Article  CAS  Google Scholar 

  7. Lee, I.-M., Gundersen-Rindal, D. E., Davis, R. E., & Bartoszyk, I. M. (1998). Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic Bacteriology, 48, 1153–1169.

    Article  CAS  Google Scholar 

  8. Hodgetts, J., Ball, T., Boonham, N., Mumford, R., & Dickinson, M. (2007). Use of terminal restriction fragment length polymorphism (T-RFLP) for identification of phytoplasmas in plants. Plant Pathology, 56, 357–365.

    Article  CAS  Google Scholar 

  9. Nicolaisen, M., & Bertaccini, A. (2007). An oligonucleotide microarray-based assay for identification of phytoplasma 16S ribosomal groups. Plant Pathology, 56, 332–336.

    Article  CAS  Google Scholar 

  10. Christensen, N. M., Nicolaisen, M., Hansen, M., & Schulz, A. (2004). Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Molecular Plant-Microbe Interactions, 17, 1175–1184.

    Article  CAS  Google Scholar 

  11. Hodgetts, J., Boonham, N., Mumford, R., & Dickinson, M. (2009). Panel of 23S rRNA gene-based real-time PCR assays for improved universal and group-specific detection of phytoplasmas. Applied and Environment Microbiology, 75, 2945–2950.

    Article  CAS  Google Scholar 

  12. Tomlinson, J. A., Boonham, N., & Dickinson, M. (2010). Development and evaluation of a one-hour DNA extraction and loop-mediated isothermal amplification assay for rapid detection of phytoplasmas. Plant Pathology, 59, 465–471.

    Article  CAS  Google Scholar 

  13. Bekele, B., Hodgetts, J., Tomlinson, J., Boonham, N., Nikolic´, P., Swarbrick, P., et al. (2011). Use of a real-time LAMP isothermal assay for detecting 16SrII and XII phytoplasmas in fruit and weeds of the Ethiopian Rift Valley. Plant Pathology, 60, 345–355.

    Article  CAS  Google Scholar 

  14. Hodgetts, J., Tomlinson, J., Boonham, N., González-Martín, I., Nikolić, P., Swarbrick, P., et al. (2011). Development of rapid in-field loop-mediated isothermal amplification (LAMP) assays for phytoplasmas. Bulletin of Insectology, 64, S41–S42.

    Google Scholar 

  15. Wei, W., Kakizawa, S., Jung, H.-Y., Suzuki, S., Tanaka, M., Nishigawa, H., et al. (2004). An antibody against the SecA membrane protein of one phytoplasma reacts with those of phylogenetically different phytoplasmas. Phytopathology, 94, 683–686.

    Article  CAS  Google Scholar 

  16. Kakizawa, S., Oshima, K., Kuboyama, T., Nishigawa, H., Jung, H.-Y., Sawayanagi, T., et al. (2001). Cloning and expression analysis of Phytoplasma protein translocation genes. Molecular Plant Microbe Interaction, 14, 1043–1050.

    CAS  Google Scholar 

  17. Economou, A. (1999). Following the leader: Bacterial protein export through the Sec pathway. Trends in Microbiology, 7, 315–319.

    Article  CAS  Google Scholar 

  18. Kakizawa, S., Oshima, K., Nishigawa, H., Jung, H.-Y., Wei, W., Suzuki, S., et al. (2004). Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology, 150, 135–142.

    Article  CAS  Google Scholar 

  19. Berg, M., Davies, D. L., Clark, M. F., Vetten, H. J., Maie, G., Marcone, C., et al. (1999). Isolation of the gene encoding an immunodominant membrane protein of the apple proliferation phytoplamsa, and expression and characterization of the gene product. Microbiology, 145, 1937–1943.

    Article  CAS  Google Scholar 

  20. Siampour, M., Izadpanah, K., Galetto, L., Salehi, M. C., & Marzachí, C. (2013). Molecular characterization, phylogenetic comparison and serological relationship of the Imp protein of several ‘Candidatus Phytoplasma aurantifolia’ strains. Plant Pathology, 62, 452–459.

    Article  CAS  Google Scholar 

  21. Blomquist, C. L., Barbara, D. J., Davies, D. L., Clark, M. F., & Kirkpatrick, B. C. (2001). An immunodominant membrane protein gene from the Western X-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology, 147, 571–580.

    CAS  Google Scholar 

  22. Boonham, N., Glover, R., Tomlinson, J., & Mumford, R. (2008). Exploiting generic platform technologies for the detection and identification of plant pathogens. European Journal of Plant Pathology, 121, 355–363.

    Article  CAS  Google Scholar 

  23. Tsuda, S., Kameya-Iwaki, M., Hanada, K., Kouda, Y., Hikata, M., & Tomaru, K. (1992). A novel detection and identification technique for plant viruses: Rapid immunofilter paper assay (RIPA). Plant Disease, 76, 466–469.

    Article  CAS  Google Scholar 

  24. Danks, C., & Barker, I. (2000). On-site detection of plant pathogens using lateral-flow devices. Bulletin of OEPP, 30, 421–426.

    Article  Google Scholar 

  25. Braun-Kiewnick, A., Altenbach, D., Oberhänsli, T., Bitterlin, W., & Duffy, B. (2011). A rapid lateral-flow immunoassay for phytosanitary detection of Erwinia amylovora and on-site fire blight diagnosis. Journal of Microbiol Methods, 87, 1–9.

    Article  CAS  Google Scholar 

  26. Thornton, C. R., Groenhof, A. C., Forrest, R., & Lamotte, R. (2004). A one-step, immunochromatographic lateral flow device specific to Rhizoctonia solani and certain related species, and its use to detect and quantify R. solani in soil. Phytopathology, 94, 280–288.

    Article  CAS  Google Scholar 

  27. Lane, C. R., Hobden, E., Walker, L., Barton, V. C., Inman, A. J., Hughes, K. J. D., et al. (2007). Evaluation of a rapid diagnostic field test kit for identification of Phytophthora species, including P. ramorum and P. kernoviae at the point of inspection. Plant Pathology, 56, 828–835.

    Article  Google Scholar 

  28. De Boer, S. H., & López, M. M. (2012). New grower-friendly methods for plant pathogen monitoring. Annual Review of Phytopathology, 50, 197–218.

    Article  Google Scholar 

  29. Harlow, E., & Lane, D. (1988). Antibodies: A laboratory manual. New York: Cold Spring Harbour Laboratory Press.

    Google Scholar 

  30. Sambrook, J., & Russell, D. (2000). Molecular cloning: A laboratory manual. New York: Cold Spring Harbour Laboratory Press.

    Google Scholar 

  31. Barbara, D. J., Morton, A., Clark, M. F., & Davies, D. L. (2002). Immunodominant membrane proteins from two phytoplasmas in the aster yellows clade (chlorante aster yellows and clover phyllody) are highly divergent in the major hydrophilic region. Microbiology, 148, 157–167.

    CAS  Google Scholar 

  32. Hu, J. S., Li, H. P., Barry, K., & Wang, M. (1995). Comparison of dot blot, ELISA, and RT-PCR assays for detection of two cucumber mosaic virus isolates infecting banana in Hawaii. Plant Disease, 79, 902–906.

    Article  CAS  Google Scholar 

  33. Olmos, A., Dasí, M. A., Candresse, T., & Cambra, M. (1996). Print-capture PCR: a simple and highly sensitive method for the detection of Plum pox virus (PPV) in plant tissues. Nucleic Acids Research, 24, 2192–2193.

    Article  CAS  Google Scholar 

  34. Hogenhout, S. A., Oshima, K., Ammar, el-D, Kakizawa, S., Kingdom, H. N., & Namba, S. (2008). Phytoplasmas: Bacteria that manipulate plants and insects. Molecular Plant Pathology, 9, 403–423.

    Article  CAS  Google Scholar 

  35. Massumi, H., Jones, P., & Hague, N. (2005). Partial epitope mapping of Alfalfa mosaic virus and the effect of coat protein gene mutation on aphid transmission. Iranian Journal of Biotechnology, 3, 31–40.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was performed as part of a Defra Plant Health Division-funded Taxonomic Fellowship (for JH). The authors would like to thank Professor Phil Jones (Rothamsted Research, UK), Dr. Jaroslava Přibylova (Institute of Plant Molecular Biology, Czech Republic), Dr. Joseph Nipah (CSIR, Sekondi, Ghana), Dr. Nigel Harrison (University of Florida, USA), and Professor Assunta Bertaccini (University of Bologna, Italy) for providing samples. Phytoplasmas were held under Defra Plant Health Licence No. PHL 173B/5244.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Hodgetts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodgetts, J., Johnson, G., Perkins, K. et al. The Development of Monoclonal Antibodies to the secA Protein of Cape St. Paul Wilt Disease Phytoplasma and Their Evaluation as a Diagnostic Tool. Mol Biotechnol 56, 803–813 (2014). https://doi.org/10.1007/s12033-014-9759-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9759-8

Keywords

Navigation