Advertisement

Molecular Biotechnology

, Volume 56, Issue 5, pp 429–437 | Cite as

A Role for H/ACA and C/D Small Nucleolar RNAs in Viral Replication

  • James L. Murray
  • Jinsong Sheng
  • Donald H. RubinEmail author
Research

Abstract

We have employed gene-trap insertional mutagenesis to identify candidate genes whose disruption confer phenotypic resistance to lytic infection, in independent studies using 12 distinct viruses and several different cell lines. Analysis of >2,000 virus-resistant clones revealed >1,000 candidate host genes, approximately 20 % of which were disrupted in clones surviving separate infections with 2–6 viruses. Interestingly, there were 83 instances in which the insertional mutagenesis vector disrupted transcripts encoding H/ACA-class and C/D-class small nucleolar RNAs (SNORAs and SNORDs, respectively). Of these, 79 SNORAs and SNORDs reside within introns of 29 genes (predominantly protein-coding), while 4 appear to be independent transcription units. siRNA studies targeting candidate SNORA/Ds provided independent confirmation of their roles in infection when tested against cowpox virus, Dengue Fever virus, influenza A virus, human rhinovirus 16, herpes simplex virus 2, or respiratory syncytial virus. Significantly, eight of the nine SNORA/Ds targeted with siRNAs enhanced cellular resistance to multiple viruses suggesting widespread involvement of SNORA/Ds in virus–host interactions and/or virus-induced cell death.

Keywords

SNORA SNORD Virus Gene-trap siRNA Susceptibility 

Notes

Acknowledgments

This work was supported by the Red and Bobby Buisson Foundation, and Public Health Service Small Business Innovation Research (SBIR) Grant AI084705 from the Division of AIDS, National Institute of Allergy and Infectious Diseases. DHR was supported by gifts from Maggie Chassman, the Red and Bobby Buisson Foundation, Inc., Zirus, Inc., and the Public Health Service. None of the funding sources influenced the study design, the collection, analysis of interpretation of data, the preparation of this manuscript, or the decision to submit the article for publication. We also thank Dr. H. Earl Ruley of Vanderbilt University for critical review of the manuscript, and Drs. Natalie McDonald and Thomas Hodge (Zirus, Inc.) for technical support.

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    von Melchner, H., & Ruley, H. E. (1989). Identification of cellular promoters by using a retrovirus promoter trap. Journal of Virology, 63, 3227–3233.Google Scholar
  2. 2.
    Dziuba, N., Ferguson, M. R., O’Brien, W. A., Sanchez, A., Prussia, A. J., McDonald, N. J., et al. (2012). Identification of cellular proteins required for replication of human immunodeficiency virus type 1. AIDS Research and Human Retroviruses, 28, 1329–1339.CrossRefGoogle Scholar
  3. 3.
    Friedrich, B. M., Murray, J. L., Guangyu, L., Sheng, J., Hodge, T. W., Rubin, D. H., et al. (2011). A functional role for ADAM10 in human immunodeficiency virus type-1 replication. Retrovirology, 8, 32.CrossRefGoogle Scholar
  4. 4.
    Murray, J. L., Mavrakis, M., McDonald, N. J., Yilla, M., Sheng, J., Bellini, W. J., et al. (2005). Rab9 GTPase is required for replication of human immunodeficiency virus type 1, filoviruses, and measles virus. Journal of Virology, 79, 11742–11751.CrossRefGoogle Scholar
  5. 5.
    Murray, J. L., McDonald, N. J., Sheng, J., Shaw, M. W., Hodge, T. W., Rubin, D. H., et al. (2012). Inhibition of influenza A virus replication by antagonism of a PI3K–AKT–mTOR pathway member identified by gene-trap insertional mutagenesis. Antiviral Chemistry & Chemotherapy, 22, 205–215.CrossRefGoogle Scholar
  6. 6.
    Organ, E. L., Nalbantyan, C. D., Nanney, L. B., Woodward, S. C., Sheng, J., Dubois, R. N., et al. (2004). Effects of transforming growth factor-alpha (TGF-alpha) in vitro and in vivo on reovirus replication. DNA and Cell Biology, 23, 430–441.CrossRefGoogle Scholar
  7. 7.
    Organ, E. L., Sheng, J., Ruley, H. E., & Rubin, D. H. (2004). Discovery of mammalian genes that participate in virus infection. BMC Cell Biology, 5, 41.CrossRefGoogle Scholar
  8. 8.
    Sheng, J., Organ, E. L., Hao, C., Wells, K. S., Ruley, H. E., & Rubin, D. H. (2004). Mutations in the IGF-II pathway that confer resistance to lytic reovirus infection. BMC Cell Biology, 5, 32.CrossRefGoogle Scholar
  9. 9.
    Fennessey, C. M., Sheng, J., Rubin, D. H., & McClain, M. S. (2012). Oligomerization of Clostridium perfringens epsilon toxin is dependent upon caveolins 1 and 2. PLoS ONE, 7, e46866.CrossRefGoogle Scholar
  10. 10.
    Ivie, S. E., Fennessey, C. M., Sheng, J., Rubin, D. H., & McClain, M. S. (2011). Gene-trap mutagenesis identifies mammalian genes contributing to intoxication by Clostridium perfringens epsilon-toxin. PLoS ONE, 6, e17787.CrossRefGoogle Scholar
  11. 11.
    Bachellerie, J. P., Cavaille, J., & Huttenhofer, A. (2002). The expanding snoRNA world. Biochimie, 84, 775–790.CrossRefGoogle Scholar
  12. 12.
    Matera, A. G., Terns, R. M., & Terns, M. P. (2007). Non-coding RNAs: Lessons from the small nuclear and small nucleolar RNAs. Nature Reviews Molecular Cell Biology, 8, 209–220.CrossRefGoogle Scholar
  13. 13.
    Karijolich, J., & Yu, Y. T. (2011). Converting nonsense codons into sense codons by targeted pseudouridylation. Nature, 474, 395–398.CrossRefGoogle Scholar
  14. 14.
    Saraiya, A. A., & Wang, C. C. (2008). snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathogens, 4, e1000224.CrossRefGoogle Scholar
  15. 15.
    Michel, C. I., Holley, C. L., Scruggs, B. S., Sidhu, R., Brookheart, R. T., Listenberger, L. L., et al. (2011). Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metabolism, 14, 33–44.CrossRefGoogle Scholar
  16. 16.
    Hicks, G. G., Shi, E. G., Li, X. M., Li, C. H., Pawlak, M., & Ruley, H. E. (1997). Functional genomics in mice by tagged sequence mutagenesis. Nature Genetics, 16, 338–344.CrossRefGoogle Scholar
  17. 17.
    Momose, F., Basler, C. F., O’Neill, R. E., Iwamatsu, A., Palese, P., & Nagata, K. (2001). Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. Journal of Virology, 75, 1899–1908.CrossRefGoogle Scholar
  18. 18.
    Karlas, A., Machuy, N., Shin, Y., Pleissner, K. P., Artarini, A., Heuer, D., et al. (2010). Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature, 463, 818–822.CrossRefGoogle Scholar
  19. 19.
    Hao, L., Sakurai, A., Watanabe, T., Sorensen, E., Nidom, C. A., Newton, M. A., et al. (2008). Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature, 454, 890–893.CrossRefGoogle Scholar
  20. 20.
    Konig, R., Zhou, Y., Elleder, D., Diamond, T. L., Bonamy, G. M., Irelan, J. T., et al. (2008). Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell, 135, 49–60.CrossRefGoogle Scholar
  21. 21.
    Strang, B. L., & Stow, N. D. (2007). Blocks to herpes simplex virus type 1 replication in a cell line, tsBN2, encoding a temperature-sensitive RCC1 protein. Journal of General Virology, 88, 376–383.CrossRefGoogle Scholar
  22. 22.
    Smith, C. M., & Steitz, J. A. (1998). Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Molecular and Cellular Biology, 18, 6897–6909.Google Scholar
  23. 23.
    Tycowski, K. T., Shu, M. D., & Steitz, J. A. (1996). A mammalian gene with introns instead of exons generating stable RNA products. Nature, 379, 464–466.CrossRefGoogle Scholar
  24. 24.
    Pelczar, P., & Filipowicz, W. (1998). The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5′-terminal oligopyrimidine gene family. Molecular and Cellular Biology, 18, 4509–4518.Google Scholar
  25. 25.
    Amaldi, F., & Pierandrei-Amaldi, P. (1997). TOP genes: A translationally controlled class of genes including those coding for ribosomal proteins. Progress in Molecular and Subcellular Biology, 18, 1–17.CrossRefGoogle Scholar
  26. 26.
    Yamashita, R., Suzuki, Y., Takeuchi, N., Wakaguri, H., Ueda, T., Sugano, S., et al. (2008). Comprehensive detection of human terminal oligo-pyrimidine (TOP) genes and analysis of their characteristics. Nucleic Acids Research, 36, 3707–3715.CrossRefGoogle Scholar
  27. 27.
    Kino, T., Hurt, D. E., Ichijo, T., Nader, N., & Chrousos, G. P. (2010). Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Science Signaling, 3, ra8.Google Scholar
  28. 28.
    Mourtada-Maarabouni, M., Hasan, A. M., Farzaneh, F., & Williams, G. T. (2010). Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Molecular Pharmacology, 78, 19–28.CrossRefGoogle Scholar
  29. 29.
    Hutzinger, R., Feederle, R., Mrazek, J., Schiefermeier, N., Balwierz, P. J., Zavolan, M., et al. (2009). Expression and processing of a small nucleolar RNA from the Epstein–Barr virus genome. PLoS Pathogens, 5, e1000547.CrossRefGoogle Scholar
  30. 30.
    Peng, X., Gralinski, L., Ferris, M. T., Frieman, M. B., Thomas, M. J., Proll, S., et al. (2011). Integrative deep sequencing of the mouse lung transcriptome reveals differential expression of diverse classes of small RNAs in response to respiratory virus infection. MBio, 2, e00198–e00211.CrossRefGoogle Scholar
  31. 31.
    Calle, A., Ugrinova, I., Epstein, A. L., Bouvet, P., Diaz, J. J., & Greco, A. (2008). Nucleolin is required for an efficient herpes simplex virus type 1 infection. Journal of Virology, 82, 4762–4773.CrossRefGoogle Scholar
  32. 32.
    Melen, K., Kinnunen, L., Fagerlund, R., Ikonen, N., Twu, K. Y., Krug, R. M., et al. (2007). Nuclear and nucleolar targeting of influenza A virus NS1 protein: Striking differences between different virus subtypes. Journal of Virology, 81, 5995–6006.CrossRefGoogle Scholar
  33. 33.
    Michienzi, A., Cagnon, L., Bahner, I., & Rossi, J. J. (2000). Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA. Proceedings of the National Academy of Sciences of the United States of America, 97, 8955–8960.CrossRefGoogle Scholar
  34. 34.
    Ponti, D., Troiano, M., Bellenchi, G. C., Battaglia, P. A., & Gigliani, F. (2008). The HIV Tat protein affects processing of ribosomal RNA precursor. BMC Cell Biology, 9, 32.CrossRefGoogle Scholar
  35. 35.
    Ganot, P., Jady, B. E., Bortolin, M. L., Darzacq, X., & Kiss, T. (1999). Nucleolar factors direct the 2′-O-ribose methylation and pseudouridylation of U6 spliceosomal RNA. Molecular and Cellular Biology, 19, 6906–6917.Google Scholar
  36. 36.
    Huttenhofer, A., Kiefmann, M., Meier-Ewert, S., O’Brien, J., Lehrach, H., Bachellerie, J. P., et al. (2001). RNomics: An experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO Journal, 20, 2943–2953.CrossRefGoogle Scholar
  37. 37.
    Schattner, P., Barberan-Soler, S., & Lowe, T. M. (2006). A computational screen for mammalian pseudouridylation guide H/ACA RNAs. RNA, 12, 15–25.CrossRefGoogle Scholar
  38. 38.
    Tycowski, K. T., You, Z. H., Graham, P. J., & Steitz, J. A. (1998). Modification of U6 spliceosomal RNA is guided by other small RNAs. Molecular Cell, 2, 629–638.CrossRefGoogle Scholar
  39. 39.
    Vitali, P., Royo, H., Seitz, H., Bachellerie, J. P., Huttenhofer, A., & Cavaille, J. (2003). Identification of 13 novel human modification guide RNAs. Nucleic Acids Research, 31, 6543–6551.CrossRefGoogle Scholar
  40. 40.
    Valadkhan, S., Mohammadi, A., Jaladat, Y., & Geisler, S. (2009). Protein-free small nuclear RNAs catalyze a two-step splicing reaction. Proceedings of the National Academy of Sciences of the United States of America, 106, 11901–11906.CrossRefGoogle Scholar
  41. 41.
    Valadkhan, S., & Manley, J. L. (2009). The use of simple model systems to study spliceosomal catalysis. RNA, 15, 4–7.CrossRefGoogle Scholar
  42. 42.
    Valadkhan, S. (2007). The spliceosome: A ribozyme at heart? Biological Chemistry, 388, 693–697.CrossRefGoogle Scholar
  43. 43.
    Valadkhan, S., & Manley, J. L. (2003). Characterization of the catalytic activity of U2 and U6 snRNAs. RNA, 9, 892–904.CrossRefGoogle Scholar
  44. 44.
    Chiang, C., Chen, G. W., & Shih, S. R. (2008). Mutations at alternative 5′ splice sites of M1 mRNA negatively affect influenza A virus viability and growth rate. Journal of Virology, 82, 10873–10886.CrossRefGoogle Scholar
  45. 45.
    Engelhardt, O. G., & Fodor, E. (2006). Functional association between viral and cellular transcription during influenza virus infection. Reviews in Medical Virology, 16, 329–345.CrossRefGoogle Scholar
  46. 46.
    McLaren, M., Marsh, K., & Cochrane, A. (2008). Modulating HIV-1 RNA processing and utilization. Frontiers in Bioscience, 13, 5693–5707.CrossRefGoogle Scholar
  47. 47.
    Qiu, J., & Pintel, D. (2008). Processing of adeno-associated virus RNA. Frontiers in Bioscience, 13, 3101–3115.CrossRefGoogle Scholar
  48. 48.
    Wagner, E. K., & Bloom, D. C. (1997). Experimental investigation of herpes simplex virus latency. Clinical Microbiology Reviews, 10, 419–443.Google Scholar
  49. 49.
    Galloway, S. E., Richardson, P. E., & Wertz, G. W. (2008). Analysis of a structural homology model of the 2′-O-ribose methyltransferase domain within the vesicular stomatitis virus L protein. Virology, 382, 69–82.CrossRefGoogle Scholar
  50. 50.
    Kroschewski, H., Lim, S. P., Butcher, R. E., Yap, T. L., Lescar, J., Wright, P. J., et al. (2008). Mutagenesis of the dengue virus type 2 NS5 methyltransferase domain. Journal of Biological Chemistry, 283, 19410–19421.CrossRefGoogle Scholar
  51. 51.
    Zhou, Y., Ray, D., Zhao, Y., Dong, H., Ren, S., Li, Z., et al. (2007). Structure and function of flavivirus NS5 methyltransferase. Journal of Virology, 81, 3891–3903.CrossRefGoogle Scholar
  52. 52.
    Dias, A., Bouvier, D., Crepin, T., McCarthy, A. A., Hart, D. J., Baudin, F., et al. (2009). The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature, 458, 914–918.CrossRefGoogle Scholar
  53. 53.
    Bouloy, M., Plotch, S. J., & Krug, R. M. (1980). Both the 7-methyl and the 2′-O-methyl groups in the cap of mRNA strongly influence its ability to act as primer for influenza virus RNA transcription. Proceedings of the National Academy of Sciences of the United States of America, 77, 3952–3956.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • James L. Murray
    • 1
  • Jinsong Sheng
    • 2
  • Donald H. Rubin
    • 2
    • 3
    • 4
    Email author
  1. 1.Zirus, Inc.BufordUSA
  2. 2.Department of MedicineVanderbilt UniversityNashvilleUSA
  3. 3.Department of Pathology, Microbiology & ImmunologyVanderbilt UniversityNashvilleUSA
  4. 4.NashvilleUSA

Personalised recommendations