Molecular Biotechnology

, Volume 56, Issue 4, pp 329–339 | Cite as

Assessment of Reference Genes for Real-Time Quantitative PCR Gene Expression Normalization During C2C12 and H9c2 Skeletal Muscle Differentiation

  • Twinkle J. Masilamani
  • Julie J. Loiselle
  • Leslie C. Sutherland


Skeletal muscle differentiation occurs during muscle development and regeneration. To initiate and maintain the differentiated state, a multitude of gene expression changes occur. Accurate assessment of these differentiation-related gene expression changes requires good quality template, but more specifically, appropriate internal controls for normalization. Two cell line-based models used for in vitro analyses of muscle differentiation incorporate mouse C2C12 and rat H9c2 cells. In this study, we set out to identify the most appropriate controls for mRNA expression normalization during C2C12 and H9c2 differentiation. We assessed the expression profiles of Actb, Gapdh, Hprt, Rps12 and Tbp during C2C12 differentiation and of Gapdh and Rps12 during H9c2 differentiation. Using NormFinder, we validated the stability of the genes individually and of the geometric mean generated from different gene combinations. We verified our results using Myogenin. Our study demonstrates that using the geometric mean of a combination of specific reference genes for normalization provides a platform for more precise test gene expression assessment during myoblast differentiation than using the absolute expression value of an individual gene and reinforces the necessity of reference gene validation.


Skeletal differentiation C2C12 H9c2 Myogenesis Real-time quantitative PCR Reference genes Normalization Geometric mean 



This work was funded by an NSERC Vanier Canada Graduate Scholarship (CGS) to T.J.M., an NSERC Alexander Graham Bell Canada Graduate Scholarship to J.J.L., NSERC Grant # 9043429 to L.C.S. and the Northern Cancer Foundation. The authors would like to acknowledge some initial technical assistance from Tyler Kirwan, and reagents from - and discussions with - Celine Boudreau-Larivière.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

12033_2013_9712_MOESM1_ESM.docx (10.9 mb)
Supplementary material 1 (DOCX 11123 kb)


  1. 1.
    Molkentin, J. D., & Olson, E. N. (1996). Defining the regulatory networks for muscle development. Current Opinion Genetics Development, 6, 445–453.CrossRefGoogle Scholar
  2. 2.
    Sabourin, L. A., & Rudnicki, M. A. (2000). The molecular regulation of myogenesis. Clinical Genetics, 57, 16–25.CrossRefGoogle Scholar
  3. 3.
    Florini, J. R., Ewton, D. Z., & Coolican, S. A. (1996). Growth hormone and the insulin-like growth factor system in myogenesis. Endocrine Reviews, 17, 481–517.Google Scholar
  4. 4.
    Bijlenga, P., Liu, J. H., Espinos, E., Haenggeli, C. A., Fischer-Lougheed, J., Bader, C. R., et al. (2000). T-type alpha 1H Ca2 + channels are involved in Ca2 + signaling during terminal differentiation (fusion) of human myoblasts. Proceedings National Academy Science USA, 97, 7627–7632.CrossRefGoogle Scholar
  5. 5.
    Knight, J. D., & Kothary, R. (2011). The myogenic kinome: protein kinases critical to mammalian skeletal myogenesis. Skelet Muscle, 1, 29.CrossRefGoogle Scholar
  6. 6.
    Cabane, C., Englaro, W., Yeow, K., Ragno, M., & Derijard, B. (2003). Regulation of C2C12 myogenic terminal differentiation by MKK3/p38alpha pathway. American Journal of Physiology Cell Physiology, 284, C658–C666.CrossRefGoogle Scholar
  7. 7.
    Casadei, L., Vallorani, L., Gioacchini, A. M., Guescini, M., Burattini, S., D’Emilio, A., et al. (2009). Proteomics-based investigation in C2C12 myoblast differentiation. European Journal of Histochemistry, 53, 261–268.CrossRefGoogle Scholar
  8. 8.
    Ding, Y., Choi, K. J., Kim, J. H., Han, X., Piao, Y., Jeong, J. H., et al. (2008). Endogenous hydrogen peroxide regulates glutathione redox via nuclear factor erythroid 2-related factor 2 downstream of phosphatidylinositol 3-kinase during muscle differentiation. American Journal of Pathology, 172, 1529–1541.CrossRefGoogle Scholar
  9. 9.
    Favreau, C., Delbarre, E., Courvalin, J. C., & Buendia, B. (2008). Differentiation of C2C12 myoblasts expressing lamin A mutated at a site responsible for Emery-Dreifuss muscular dystrophy is improved by inhibition of the MEK-ERK pathway and stimulation of the PI3-kinase pathway. Experimental Cell Research, 314, 1392–1405.CrossRefGoogle Scholar
  10. 10.
    Wang, L., Ma, W., Markovich, R., Lee, W. L., & Wang, P. H. (1998). Insulin-like growth factor I modulates induction of apoptotic signaling in H9C2 cardiac muscle cells. Endocrinology, 139, 1354–1360.Google Scholar
  11. 11.
    Bland, C. S. Wang, E. T. Vu, A. David, M. P. Castle, J. C. Johnson, J. M. Burge, C. B. and Cooper, T. A. (2010) Global regulation of alternative splicing during myogenic differentiation. Nucleic Acids Residues 38, 7651–7664.Google Scholar
  12. 12.
    Bland, C. S. Wang, E. T. Vu, A. David, M. P. Castle, J. C. Johnson, J. M. Burge, C. B. and Cooper, T. A. (2010) Global regulation of alternative splicing during myogenic differentiation. Nucleic Acids Res 38, 7651–7664.Google Scholar
  13. 13.
    Soleimani, V. D., & Rudnicki, M. A. (2011). New insights into the origin and the genetic basis of rhabdomyosarcomas. Cancer Cell, 19, 157–159.CrossRefGoogle Scholar
  14. 14.
    Fleige, S., & Pfaffl, M. W. (2006). RNA integrity and the effect on the real-time qRT-PCR performance. Molecular Aspects of Medicine, 27, 126–139.CrossRefGoogle Scholar
  15. 15.
    Eisenberg, E., & Levanon, E. Y. (2003). Human housekeeping genes are compact. Trends in Genetics, 19, 362–365.CrossRefGoogle Scholar
  16. 16.
    Dheda, K., Huggett, J. F., Bustin, S. A., Johnson, M. A., Rook, G., & Zumla, A. (2004). Validation of housekeeping genes for normalizing RNA expression in real-time PCR. BioTechniques, 37, 112–119.Google Scholar
  17. 17.
    Gutierrez, L., Mauriat, M., Pelloux, J., Bellini, C., & Van, W. O. (2008). Towards a systematic validation of references in real-time rt-PCR. Plant Cell, 20, 1734–1735.CrossRefGoogle Scholar
  18. 18.
    Vandesompele, J. De, P. K. Pattyn, F. Poppe, B. Van, R. N. De, P. A. and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, RESEARCH0034.Google Scholar
  19. 19.
    Tanaka, S., Terada, K., & Nohno, T. (2011). Canonical Wnt signaling is involved in switching from cell proliferation to myogenic differentiation of mouse myoblast cells. J Mol Signal., 6, 12.CrossRefGoogle Scholar
  20. 20.
    Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnology Letters, 26, 509–515.CrossRefGoogle Scholar
  21. 21.
    Andersen, C. L., Jensen, J. L., & Orntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250.CrossRefGoogle Scholar
  22. 22.
    Sakiyama, K., Abe, S., Tamatsu, Y., & Ide, Y. (2005). Effects of stretching stress on the muscle contraction proteins of skeletal muscle myoblasts. Biomedical Research, 26, 61–68.CrossRefGoogle Scholar
  23. 23.
    Stuelsatz, P., Pouzoulet, F., Lamarre, Y., Dargelos, E., Poussard, S., Leibovitch, S., et al. (2010). Down-regulation of MyoD by calpain 3 promotes generation of reserve cells in C2C12 myoblasts. Journal of Biological Chemistry, 285, 12670–12683.CrossRefGoogle Scholar
  24. 24.
    Mamo, S., Gal, A. B., Bodo, S., & Dinnyes, A. (2007). Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Developmental Biology, 7, 14.CrossRefGoogle Scholar
  25. 25.
    de Jonge, H. J., de Fehrmann, R. S., Bont, E. S., Hofstra, R. M., Gerbens, F., de Kamps, W. A., et al. (2007). Evidence based selection of housekeeping genes. PLoS One, 2, e898.CrossRefGoogle Scholar
  26. 26.
    Willems, E., Mateizel, I., Kemp, C., Cauffman, G., Sermon, K., & Leyns, L. (2006). Selection of reference genes in mouse embryos and in differentiating human and mouse ES cells. International Journal of Developmental Biology, 50, 627–635.CrossRefGoogle Scholar
  27. 27.
    Lokireddy, S., Wijesoma, I. W., Teng, S., Bonala, S., Gluckman, P. D., McFarlane, C., et al. (2012). The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell Metabolism, 16, 613–624.CrossRefGoogle Scholar
  28. 28.
    Zhang, R., Edwards, J. R., Ko, S. Y., Dong, S., Liu, H., Oyajobi, B. O., et al. (2011). Transcriptional regulation of BMP2 expression by the PTH-CREB signaling pathway in osteoblasts. PLoS One, 6, e20780.CrossRefGoogle Scholar
  29. 29.
    Ogawa, M., Mizofuchi, H., Kobayashi, Y., Tsuzuki, G., Yamamoto, M., Wada, S., et al. (2012). Terminal differentiation program of skeletal myogenesis is negatively regulated by O-GlcNAc glycosylation. Biochimica et Biophysica Acta, 1820, 24–32.CrossRefGoogle Scholar
  30. 30.
    Diel, P., Baadners, D., Schlupmann, K., Velders, M., & Schwarz, J. P. (2008). C2C12 myoblastoma cell differentiation and proliferation is stimulated by androgens and associated with a modulation of myostatin and Pax7 expression. Journal of Molecular Endocrinology, 40, 231–241.CrossRefGoogle Scholar
  31. 31.
    Dugina, V., Zwaenepoel, I., Gabbiani, G., Clement, S., & Chaponnier, C. (2009). Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity. Journal of Cell Science, 122, 2980–2988.CrossRefGoogle Scholar
  32. 32.
    Seidler, N. W. (2013). Basic biology of GAPDH. Advances in Experimental Medicine and Biology, 985, 1–36.CrossRefGoogle Scholar
  33. 33.
    Gassmann, M. G., Stanzel, A., & Werner, S. (1999). Growth factor-regulated expression of enzymes involved in nucleotide biosynthesis: a novel mechanism of growth factor action. Oncogene, 18, 6667–6676.CrossRefGoogle Scholar
  34. 34.
    Meyers, R. E., & Sharp, P. A. (1993). TATA-binding protein and associated factors in polymerase II and polymerase III transcription. Molecular and Cellular Biology, 13, 7953–7960.Google Scholar
  35. 35.
    Londhe, P., & Davie, J. K. (2011). Sequential association of myogenic regulatory factors and E proteins at muscle-specific genes. Skelet. Muscle, 1, 14.CrossRefGoogle Scholar
  36. 36.
    Londhe, P., & Davie, J. K. (2011). Gamma interferon modulates myogenesis through the major histocompatibility complex class II transactivator, CIITA. Molecular and Cellular Biology, 31, 2854–2866.CrossRefGoogle Scholar
  37. 37.
    Nishimura, M., Nikawa, T., Kawano, Y., Nakayama, M., & Ikeda, M. (2008). Effects of dimethyl sulfoxide and dexamethasone on mRNA expression of housekeeping genes in cultures of C2C12 myotubes. Biochemical and Biophysical Research Communications, 367, 603–608.CrossRefGoogle Scholar
  38. 38.
    Lloyd, C., & Gunning, P. (2002). beta- and gamma-actin genes differ in their mechanisms of down-regulation during myogenesis. Journal of Cellular Biochemistry, 84, 335–342.CrossRefGoogle Scholar
  39. 39.
    Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3, 1101–1108.CrossRefGoogle Scholar
  40. 40.
    Souaze, F., Ntodou-Thome, A., Tran, C. Y., Rostene, W., & Forgez, P. (1996). Quantitative RT-PCR: limits and accuracy. BioTechniques, 21, 280–285.Google Scholar
  41. 41.
    Larionov, A., Krause, A., & Miller, W. (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics, 6, 62.CrossRefGoogle Scholar
  42. 42.
    Ali, S. A., Zaidi, S. K., Dacwag, C. S., Salma, N., Young, D. W., Shakoori, A. R., et al. (2008). Phenotypic transcription factors epigenetically mediate cell growth control. Proc Natl Acad Sci U. S. A, 105, 6632–6637.CrossRefGoogle Scholar
  43. 43.
    Charge, S. B., & Rudnicki, M. A. (2004). Cellular and molecular regulation of muscle regeneration. Physiological Reviews, 84, 209–238.CrossRefGoogle Scholar
  44. 44.
    Janot, M., Audfray, A., Loriol, C., Germot, A., Maftah, A., & Dupuy, F. (2009). Glycogenome expression dynamics during mouse C2C12 myoblast differentiation suggests a sequential reorganization of membrane glycoconjugates. BMC Genomics, 10, 483.CrossRefGoogle Scholar
  45. 45.
    Yang, J. H., Song, Y., Seol, J. H., Park, J. Y., Yang, Y. J., Han, J. W., et al. (2011). Myogenic transcriptional activation of MyoD mediated by replication-independent histone deposition. Proceedings National Academy Science USA, 108, 85–90.CrossRefGoogle Scholar
  46. 46.
    Figueroa, A., Cuadrado, A., Fan, J., Atasoy, U., Muscat, G. E., Munoz-Canoves, P., et al. (2003). Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes. Molecular and Cellular Biology, 23, 4991–5004.CrossRefGoogle Scholar
  47. 47.
    Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., et al. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611–622.CrossRefGoogle Scholar
  48. 48.
    Kee, H. J., Kim, J. R., Joung, H., Choe, N., Lee, S. E., Eom, G. H., et al. (2012). Ret finger protein inhibits muscle differentiation by modulating serum response factor and enhancer of polycomb1. Cell Death and Differentiation, 19, 121–131.CrossRefGoogle Scholar
  49. 49.
    Miller, J. B. (1990). Myogenic programs of mouse muscle cell lines: expression of myosin heavy chain isoforms, MyoD1, and myogenin. Journal of Cell Biology, 111, 1149–1159.CrossRefGoogle Scholar
  50. 50.
    Leong, C. W., Wong, C. H., Lao, S. C., Leong, E. C., Lao, I. F., Law, P. T., et al. (2007). Effect of resveratrol on proliferation and differentiation of embryonic cardiomyoblasts. Biochemical and Biophysical Research Communications, 360, 173–180.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Twinkle J. Masilamani
    • 1
    • 2
  • Julie J. Loiselle
    • 2
    • 3
  • Leslie C. Sutherland
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  1. 1.Biomolecular Sciences ProgramLaurentian UniversitySudburyCanada
  2. 2.AMRIC, Health Sciences NorthSudburyCanada
  3. 3.Department of BiologyLaurentian UniversitySudburyCanada
  4. 4.Department of Chemistry and BiochemistryLaurentian UniversitySudburyCanada
  5. 5.Division of Medical Sciences, Northern Ontario School of MedicineLaurentian UniversitySudburyCanada
  6. 6.Division of Medical Oncology, Department of MedicineUniversity of OttawaOttawaCanada

Personalised recommendations