Molecular Biotechnology

, Volume 56, Issue 2, pp 175–191 | Cite as

Statistical Screening of Medium Components for Recombinant Production of Pseudomonas aeruginosa ATCC 9027 Rhamnolipids by Nonpathogenic Cell Factory Pseudomonas putida KT2440

  • Payam Setoodeh
  • Abdolhossein Jahanmiri
  • Reza Eslamloueyan
  • Ali Niazi
  • Seyyed Shahaboddin Ayatollahi
  • Farzaneh Aram
  • Maziyar Mahmoodi
  • Ali Hortamani


Rhamnolipids (RLs) produced by the opportunistic human pathogen Pseudomonas aeruginosa are considered as potential candidates for the next generation of surfactants. Large-scale production of RLs depends on progress in strain engineering, medium design, operating strategies, and purification procedures. In this work, the rhlAB genes extracted from a mono_RLs_producing strain of P. aeruginosa (ATCC 9027) were introduced to an appropriate safety host Pseudomonas putida KT2440. The capability of the recombinant strain was evaluated in various media. As a prerequisite for optimal medium design, a set of 32 experiments was performed in two steps for screening a number of macro-nutritional compounds. In the experiments, a two-level fractional factorial design resolution IV was followed by a two-level full factorial one. By means of this approach, it was observed that glycerol, yeast extract, and peptone have significant positive influence on recombinant RLs production while the yeast extract/peptone two-factor and glycerol/yeast extract/peptone three-factor interactions have considerable negative effects. A wide range of variation from 0 to 570 mg/l was obtained for RLs production during the screening experiments indicating the importance of medium optimization. The results point out the opportunity for possible higher yields of RLs through further screening, mixture/combined mixture designs, and high-cell-density cultivations.


Heterologous rhamnolipids production Pseudomonas aeruginosa ATCC 9027 Pseudomonas putida KT2440 Transformation Experimental screening design Two-level factorial design 



The authors would like to express their deepest gratitude to Professor Victor de Lorenzo, Centro Nacional de Biotecnología, CSIC Madrid 28049, Spain, for providing pVLT33 plasmid and Professor Ibrahim Banat, School of Biomedical Sciences, University of Ulster, County Londonderry, Northern Ireland, for providing the concentrated crude RLs solution. The authors also wish to thank the reviewers for their valuable comments, which have contributed to the improvement of the manuscript.


  1. 1.
    Soberón-Chávez, G., Lepine, F., & Déziel, E. (2005). Production of rhamnolipids by Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 68, 718–725.CrossRefGoogle Scholar
  2. 2.
    Müller, M. M., Kügler, J. H., Henkel, M., Gerlitzki, M., Hörmann, B., Pöhnlein, M., et al. (2012). Rhamnolipids—next generation surfactants. Journal of Biotechnology, 162, 366–380.CrossRefGoogle Scholar
  3. 3.
    Henkel, M., Müller, M. M., Kügler, J. H., Lovaglio, R. B., Conttiero, J., Syldatk, Ch., et al. (2012). Rhamnolipids as biosurfactants from renewable resources: Concepts for next-generation rhamnolipid production. Process Biochemistry, 47, 1207–1219.CrossRefGoogle Scholar
  4. 4.
    Lietermann, F., Walter, V., Syldatk, C., & Hausmann, R. (2010). Rhamnolipids. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology (pp. 3037–3051). Berlin: Springer.CrossRefGoogle Scholar
  5. 5.
    Abdel-Mawgoud, A. M., Lépine, F., & Déziel, E. (2010). Rhamnolipids: Diversity of structures, microbial origins and roles. Applied Microbiology and Biotechnology, 86, 1323–1336.CrossRefGoogle Scholar
  6. 6.
    Pantazaki, A. A., Dimopoulou, M. I., Simou, O. M., & Pritsa, A. A. (2010). Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8. Applied Microbiology and Biotechnology, 88, 939–951.CrossRefGoogle Scholar
  7. 7.
    Řezanka, T., Siristova, L., & Sigler, K. (2011). Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus. Extremophiles, 15, 697–709.CrossRefGoogle Scholar
  8. 8.
    Müller, M. M., Hörmann, B., Syldatk, Ch., & Hausmann, R. (2010). Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Applied Microbiology and Biotechnology, 87, 167–174.CrossRefGoogle Scholar
  9. 9.
    Reimmann, C., Beyeler, M., Latifi, A., Winteler, H., Foglino, M., Lazdunski, A., et al. (1997). The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Molecular Microbiology, 24, 309–319.CrossRefGoogle Scholar
  10. 10.
    Wagner, V. E., Frelinger, J. G., Barth, R. K., & Iglewski, B. H. (2006). Quorum sensing: dynamic response of Pseudomonas aeruginosa to external signals. Trends in Microbiology, 14, 55–58.CrossRefGoogle Scholar
  11. 11.
    Schuster, M., & Greenberg, E. P. (2007). Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics, 8, 287.CrossRefGoogle Scholar
  12. 12.
    Vatsa, P., Sanchez, L., Clement, Ch., Baillieul, F., & Dorey, S. (2010). Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. International Journal of Molecular Sciences, 11, 5095–5108.CrossRefGoogle Scholar
  13. 13.
    Ochsner, U. A., Hembach, Th., & Fiechter, A. (1995). Production of rhamnolipid biosurfactants. Advances in Biochemical Engineering/Biotechnology, 53, 89–118.CrossRefGoogle Scholar
  14. 14.
    Wittgens, A., Tiso, T., Arndt, T. T., Wemk, P., Hemmerich, J., Müller, C., et al. (2011). Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microbial Cell Factories, 10, 80–97.CrossRefGoogle Scholar
  15. 15.
    Poblete-Castro, I., Becker, J., Dohnt, K., dos Santos, V. M., & Wittmann, Ch. (2012). Industrial biotechnology of Pseudomonas putida and related species. Applied Microbiology and Biotechnology, 93, 2279–2290.CrossRefGoogle Scholar
  16. 16.
    Ochsner, U. A., Reiser, J., Fiechter, A., & Witholt, B. (1995). Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Applied and Environment Microbiology, 61, 3503–3506.Google Scholar
  17. 17.
    Cha, M., Lee, N., Kim, M., Kim, M., & Lee, S. (2008). Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresource Technology, 99, 2192–2199.CrossRefGoogle Scholar
  18. 18.
    Kennedy, M., & Krouse, D. (1999). Strategies for improving fermentation medium performance: A review. Journal of Microbiology and Biotechnology, 23, 456–475.Google Scholar
  19. 19.
    Parekh, S., Vinci, V. A., & Strobel, R. J. (2000). Improvement of microbial strains and fermentation processes. Applied Microbiology and Biotechnology, 54, 287–301.CrossRefGoogle Scholar
  20. 20.
    Abdel-Fattah, Y. R., & Olama, Z. A. (2002). l-Asparginase production by Pseudomonas aeruginosa in solid-state culture: Evaluation and optimization of culture conditions using factorial designs. Process Biochemistry, 38, 115–122.CrossRefGoogle Scholar
  21. 21.
    Rispoli, F., & Shah, V. (2007). Mixture design as a first step for optimization of fermentation medium for cutinase production from Colletotrichum lindemuthianum. Journal of Industrial Microbiology and Biotechnology, 34, 349–355.CrossRefGoogle Scholar
  22. 22.
    Mandenius, C. F., & Brundin, A. (2008). Bioprocess optimization using design-of-experiments methodology. Biotechnology Progress, 24, 1191–1203.CrossRefGoogle Scholar
  23. 23.
    Broedel, S. E., Jr., Papciak, S. M., & Jones, W. R. (2001). The selection of optimum media formulations for improved expression of recombinant proteins in E. coli. Technical Bulletin, 2, 1–6.Google Scholar
  24. 24.
    Zhang, Y., & Miller, R. M. (1992). Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Applied and Environment Microbiology, 58, 3276–3282.Google Scholar
  25. 25.
    Zhang, Y., & Miller, R. M. (1994). Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Applied and Environment Microbiology, 60, 2101–2106.Google Scholar
  26. 26.
    Al-Tahhan, R. A., Sandrin, T. R., Bodour, A. A., & Maier, R. M. (2000). Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: Effect on cell surface properties and interaction with hydrophobic substrates. Applied and Environment Microbiology, 66, 3262–3268.CrossRefGoogle Scholar
  27. 27.
    Lebrón-Paler, A. (2008) Solution and interfacial characterization of rhamnolipid biosurfactant from P. aeruginosa ATCC 9027. PhD Thesis, University of Arizona, Arizona.Google Scholar
  28. 28.
    Bai, G. Y., Brusseau, M. L., & Miller, R. M. (1997). Biosurfactant-enhanced removal of residual hydrocarbon from soil. Journal of Contaminant Hydrology, 25, 157–170.CrossRefGoogle Scholar
  29. 29.
    de Lorenzo, V., Eltis, L., Kessler, B., & Timmis, K. N. (1993). Analysis of Pseudomonas gene products using lacI q/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene, 123, 17–24.CrossRefGoogle Scholar
  30. 30.
    Heyd, M., Kohnert, A., Tan, T. H., Nusser, M., Kirschhofer, F., Brenner-Weiss, G., et al. (2008). Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Analytical and Bioanalytical Chemistry, 391, 1579–1590.CrossRefGoogle Scholar
  31. 31.
    Siegmund, I., & Wagner, F. (1991). New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnology Techniques, 5, 265–268.CrossRefGoogle Scholar
  32. 32.
    Pinzon, N., & Ju, L. K. (2009). Improved detection of rhamnolipid production using agar plates containing methylene blue and cetyl trimethylammonium bromide. Biotechnology Letters, 31, 1583–1588.CrossRefGoogle Scholar
  33. 33.
    Chandrasekaran, E. V., & Bemiller, J. N. (1980). Constituent analyses of glycosaminoglycans. In R. L. Whistler (Ed.), Methods in carbohydrate chemistry (pp. 89–96). New York: Academic Press.Google Scholar
  34. 34.
    Koch, A. K., Käppeli, O., Fiechter, A., & Reiser, J. (1991). Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. Journal of Bacteriology, 173, 4212–4219.Google Scholar
  35. 35.
    Ballot, F. (2009). Bacterial production of antimicrobial biosurfactants. MSc Thesis, University of Stellenbosch, Stellenbosch, South Africa.Google Scholar
  36. 36.
    Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., et al. (1987). Current protocols in molecular biology. New York: Greene Publishing Associates/Wiley Interscience.Google Scholar
  37. 37.
    Holtz, W. J., & Keasling, J. D. (2010). Engineering static and dynamic control of synthetic pathways. Cell, 140, 19–23.CrossRefGoogle Scholar
  38. 38.
    Kim, G. J., Lee, I. Y., Choi, D. K., Yoon, S. C., & Park, Y. H. (1996). High cell density cultivation of Pseudomonas putida BM01 using glucose. Journal of Microbiology and Biotechnology, 6, 221–224.Google Scholar
  39. 39.
    Sun, Z., Ramsay, J. A., Guay, M., & Ramsay, B. A. (2006). Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Applied Microbiology and Biotechnology, 71, 423–431.CrossRefGoogle Scholar
  40. 40.
    Sivashanmugam, A., Murray, V., Cui, Ch., Zhang, Y., Wang, J., & Li, Q. (2009). Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Science, 18, 936–948.CrossRefGoogle Scholar
  41. 41.
    Clarke, K. G., Ballot, F., & Reid, S. J. (2010). Enhanced rhamnolipid production by Pseudomonas aeruginosa under phosphate limitation. World Journal of Microbiology & Biotechnology, 26, 2179–2184.CrossRefGoogle Scholar
  42. 42.
    Wagner, V. E., Bushnell, D., Passador, L., Brooks, A. I., & Iglewski, B. H. (2003). Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: Effects of growth phase and environment. Journal of Biotechnology, 185, 2080–2095.Google Scholar
  43. 43.
    Bertani, I., & Venturi, V. (2004). Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Applied and Environment Microbiology, 70, 5493–5502.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Payam Setoodeh
    • 1
  • Abdolhossein Jahanmiri
    • 1
  • Reza Eslamloueyan
    • 1
  • Ali Niazi
    • 2
  • Seyyed Shahaboddin Ayatollahi
    • 3
    • 4
  • Farzaneh Aram
    • 2
  • Maziyar Mahmoodi
    • 1
  • Ali Hortamani
    • 2
  1. 1.School of Chemical and Petroleum EngineeringShiraz UniversityShirazIran
  2. 2.Institute of BiotechnologyShiraz UniversityShirazIran
  3. 3.EOR Research CenterShiraz UniversityShirazIran
  4. 4.Sharif University of TechnologyTehranIran

Personalised recommendations