Molecular Biotechnology

, Volume 54, Issue 2, pp 371–378

Effect of Biofilm Formation by Bacillus subtilis natto on Menaquinone-7 Biosynthesis

  • Aydin Berenjian
  • Natalie Li-Cheng Chan
  • Raja Mahanama
  • Andrea Talbot
  • Hubert Regtop
  • John Kavanagh
  • Fariba Dehghani
Research

Abstract

Bacillus subtilis natto is the key microorganism for the industrial production of menaquinone-7. The fermentation of this bacterium in static culture is associated with biofilm formation. The objective of this study was to determine the effect of biofilm formation on menaquinone-7 production to develop a suitable bio-reactor for the production of menaquinone-7. In the static culture, menaquinone-7 biosynthesis showed a linear correlation with biofilm formation (R2 = 0.67) and cell density (R2 = 0.7). The amount of biofilm, cell density and menaquinone-7 formation were a function of nutrient and processing conditions. Glycerol, soy peptone, and yeast extract mixture and 40 °C were found to be the optimum nutrients and temperature for accelerating both biofilm and menaquinone-7 biosynthesis in static culture. However, glucose, mixture of soy peptone and yeast extract and 45 °C were found to be the optima for cell density. As compared to the static culture, the biofilm formation was significantly inhibited when a shaken fermentation was used. However, shaking caused only a small decrease on menaquinone-7 production. These results demonstrate that the biofilm formation is not essential for menaquinone-7 biosynthesis. This study underlines the feasibility of using large scale stirred fermentation process for menaquinone-7 production.

Keywords

Menaquinone-7 Biofilm Fermentation Bacillus subtilis natto 

References

  1. 1.
    O’Toole, G. A., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology, 54, 49–79.CrossRefGoogle Scholar
  2. 2.
    Parsek, M. R., & Greenberg, E. P. (2005). Sociomicrobiology: The connections between quorum sensing and biofilms. Trends in Microbiology, 13, 27–33.CrossRefGoogle Scholar
  3. 3.
    Branda, S. S., Vik, Å., Friedman, L., & Kolter, R. (2005). Biofilms: The matrix revisited. Trends in Microbiology, 13, 20–26.CrossRefGoogle Scholar
  4. 4.
    Kuchma, S. L., & O’Toole, G. A. (2000). Surface-induced and biofilm-induced changes in gene expression. Current Opinion in Biotechnology, 11, 429–433.CrossRefGoogle Scholar
  5. 5.
    Khiyami, M. A., Pometto, A. L, I. I. I., & Kennedy, W. J. (2006). Ligninolytic enzyme production by Phanerochaete chrysosporium in plastic composite support biofilm stirred tank bioreactors. Journal of Agriculture and Food Chemistry, 54, 1693–1698.CrossRefGoogle Scholar
  6. 6.
    Villena, G. K., & Gutierrez-Correa, M. (2006). Production of cellulase by Aspergillus niger biofilms developed on polyester cloth. Letters in Applied Microbiology, 43, 262–268.CrossRefGoogle Scholar
  7. 7.
    Cheng, K. C., Demirci, A., & Catchmark, J. M. (2010). Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor. Applied Microbiology and Biotechnology, 86, 853–861.CrossRefGoogle Scholar
  8. 8.
    Rahman, M. S., Ano, T., & Shoda, M. (2007). Biofilm fermentation of iturin A by a recombinant strain of Bacillus subtilis 168. Journal of Biotechnology, 127, 503–507.CrossRefGoogle Scholar
  9. 9.
    Dam, H. (1935). The antihemmorhagic vitamin of the chick: Occurrence and chemical nature. Nature, 135, 652–653.CrossRefGoogle Scholar
  10. 10.
    Meurer, J., Meierhoff, K., & Westhoff, P. (1996). Isolation of high-chlorophyll-fluorescence mutants of Arabidopsis thaliana and their characterisation by spectroscopy, immunoblotting and Northern hybridisation. Planta, 198, 385–396.CrossRefGoogle Scholar
  11. 11.
    Collins, M. D., & Jones, D. (1981). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiology and Molecular Biology Reviews, 45, 316–354.Google Scholar
  12. 12.
    Tsukamoto, Y., Kasai, M., & Kakuda, H. (2001). Construction of a Bacillus subtilis (natto) with high productivity of vitamin K2 (menaquinone-7) by analog resistance. Bioscience, Biotechnology, and Biochemistry, 65, 2007–2015.CrossRefGoogle Scholar
  13. 13.
    Berenjian, A., Mahanama, R., Talbot, A., Biffin, R., Regtop, H., Valtchev, P., et al. (2011). Efficient media for high menaquinone-7 production: Response surface methodology approach. New Biotech, 28, 665–672.CrossRefGoogle Scholar
  14. 14.
    Mahanama, R., Berenjian, A., Valtchev, P., Talbot, A., Biffin, R., Regtop, H., et al. (2011). Enhanced production of menaquinone 7 via solid substrate fermentation from Bacillus subtilis. International Journal of Food Engineering, 7, art. no. 17.Google Scholar
  15. 15.
    Eddy, D. M., Johnston, C. C, Jr, Cummings, S. R., Dawson-Hughes, B., Lindsay, R., Melton, L. J, I. I. I., et al. (1998). Osteoporosis: Review of the evidence for prevention, diagnosis, and treatment and cost-effectiveness analysis, Status report. Osteoporosis International, 8, S1–S82.Google Scholar
  16. 16.
    Gast, G. C. M., De Roos, N. M., Sluijs, I., Bots, M. L., Beulens, J. W. J., Geleijnse, J. M., et al. (2009). A high menaquinone intake reduces the incidence of coronary heart disease. Nutrition Metabolism Cardiovascular Diseases, 19, 504–510.CrossRefGoogle Scholar
  17. 17.
    Morikawa, M., Kagihiro, S., Haruki, M., Takano, K., Branda, S., Kolter, R., et al. (2006). Biofilm formation by a Bacillus subtilis strain that produces γ-polyglutamate. Microbiology, 152, 2801–2807.CrossRefGoogle Scholar
  18. 18.
    O’Toole, G. A., Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B., & Kolter, R. (1999). Genetic approaches to study of biofilms. Methods in Enzymology, 310, 91–109.CrossRefGoogle Scholar
  19. 19.
    Park, R. S., Mayne, C. S., & Keady, T. W. J. (2002). Silage production and utilization. Wageningen: Wageningen Academic Publishers.Google Scholar
  20. 20.
    Betancur, G. J. V., & Pereira, N, Jr. (2010). Sugar cane bagasse as feedstock for second generation ethanol production. Part II. Hemicellulose hydrolysate fermentability. Electronic Journal of Biotechnology, 13, 14–15.Google Scholar
  21. 21.
    Sato, T., Yamadaa, Y., Ohtania, Y., Mitsuib, N., Murasawab, H., & Araki, S. (2001). Production of menaquinone (vitamin K2)-7 by Bacillus subtilis. Journal of Bioscience and Bioengineering, 91, 16–20.Google Scholar
  22. 22.
    Richard, A., & Margaritis, A. (2003). Rheology, oxygen transfer, and molecular weight characteristics of poly(glutamic acid) fermentation by Bacillus subtilis. Biotechnology and Bioengineering, 82, 299–305.CrossRefGoogle Scholar
  23. 23.
    Al, Sonenshein, Hoch, J. A., & Losick, R. (2002). Bacillus subtilis and its closest relatives. Washington, DC: ASM Press.Google Scholar
  24. 24.
    Tani, Y., Asahi, S., & Yamada, H. (1984). Vitamin K2 (menaquinone): Screening of producing microorganisms and production by Flavobacterium meningosepticum. Journal of Fermentation Technology, 62, 321–327.Google Scholar
  25. 25.
    Zohora, U. S., Rahman, M. S., & Ano, T. (2009). Biofilm formation and lipopeptide antibiotic iturin A production in different peptone media. Journal of Environmental Sciences, 21, S24–S27.CrossRefGoogle Scholar
  26. 26.
    Meganathan, R. (2001). Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): A perspective on enzymatic mechanisms. Vitamins and Hormones, 61, 173–218.CrossRefGoogle Scholar
  27. 27.
    Bentley, R., & Meganathan, R. (1982). Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiological Reviews, 46, 241–280.Google Scholar
  28. 28.
    Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8, 881–890.CrossRefGoogle Scholar
  29. 29.
    Hernandez, M. E., & Newman, D. K. (2001). Extracellular electron transfer. Cellular and Molecular Life Sciences, 58, 1562–1571.CrossRefGoogle Scholar
  30. 30.
    Spormann, A. M. (2008). Physiology of microbes in biofilms. Current Topics in Microbiology and Immunology, 322, 17–36.CrossRefGoogle Scholar
  31. 31.
    Stewart, P. S., & Franklin, M. J. (2008). Physiological heterogeneity in biofilms. Nature Reviews Microbiology, 6, 199–210.CrossRefGoogle Scholar
  32. 32.
    Rani, S. A., Pitts, B., Beyenal, H., Veluchamy, R. A., Lewandowski, Z., Davison, W. M., et al. (2007). Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. Journal of Bacteriology, 189, 4223–4233.CrossRefGoogle Scholar
  33. 33.
    Karel, S. F., Libicki, S. B., & Robertson, C. R. (1985). The immobilization of whole cells: Engineering principles. Chemical Engineering Science, 40, 1321–1354.CrossRefGoogle Scholar
  34. 34.
    Torres, C., Lenon, G., Craperi, D., Wilting, R., & Blanco, Á. (2011). Enzymatic treatment for preventing biofilm formation in the paper industry. Applied Microbiology and Biotechnology, 92, 95–103.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Aydin Berenjian
    • 1
  • Natalie Li-Cheng Chan
    • 1
  • Raja Mahanama
    • 1
  • Andrea Talbot
    • 2
  • Hubert Regtop
    • 2
  • John Kavanagh
    • 1
  • Fariba Dehghani
    • 1
  1. 1.School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
  2. 2.Agricure Scientific OrganicsBraemarAustralia

Personalised recommendations