Molecular Biotechnology

, Volume 54, Issue 2, pp 337–349 | Cite as

Cold Response of Dedifferentiated Barley Cells at the Gene Expression, Hormone Composition, and Freezing Tolerance Levels: Studies on Callus Cultures

  • Ildikó Vashegyi
  • Zsuzsa Marozsán-Tóth
  • Gábor Galiba
  • Petre I. Dobrev
  • Radomira Vankova
  • Balázs Tóth


In this study, data is presented how dark-grown, embryogenic barley callus cells respond to cold without any light-dependent, chloroplast-related mechanism, independently of the systemic signals. The expression of HvCBF9, HvCBF14, and HvCOR14b genes, members of one of the most important cold-inducible regulatory system, was measured by real-time PCR. Characteristic of the cold response was similar in the crowns of seedlings and in dark-grown callus cultures, however, gene expression levels were lower in calli. Endogenous concentration of auxins, abscisic acid, and salicylic acid did not change, but phaseic acid and neophaseic acid showed robust accumulation after cold acclimation. Freezing tolerance of the cultures was also higher after 7 days of cold-hardening. The results suggest the presence of a basal, light-independent, cold-responsive activation of the CBF–COR14b pathway in barley cultures. The effects of Dicamba, the exogenous auxin analog used for maintaining tissue cultures were also studied. Dicamba seems to be a general enhancer of the gene expression and physiological responses to cold stress, but has no specific effect on the activation. Our data along with previous findings show that this system might be a suitable model for studying certain basic cellular mechanisms involved in the cold acclimation process in cereals.


ABA Barley Callus CBF Cold COR14b Dicamba IAA 



2,4-Dichlorophenoxyacetic acid (IUPAC: (2,4-dichlorophenoxy) acetic acid)


Abscisic acid (IUPAC: (S)-5-(1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl)-3-methyl-2,4-pentanedienoic acid)


ABA-Responsive Element Binding Protein/Factor


6-Benzylaminopurine (IUPAC: N-(phenylmethyl)-7H-purin-6-amine)


C-repeat binding factor


Cold-regulated gene


Dicamba (IUPAC: 3,6-dichloro-2-methoxybenzoic acid)


Dihydrophaseic acid (IUPAC: (2Z,4E)-5-[(1R,3S,5R,8S)-3,8-dihydroxy-1,5-dimethyl-6-oxabicyclo[3.2.1]oct-8-yl]-3-methylpenta-2,4-dienoic acid)


Indole-3-acetic acid (IUPAC: 2-(1H-indol-3-yl)acetic acid)


IAA-aspartate (IUPAC: 2-[[2-(1H-indol-3-yl)acetyl]amino]butanedioate)


IAA-glucose ester


Inducer of CBF expression


Jasmonic acid (IUPAC: (1R,2R)-3-oxo-2-(2Z)-2-pentenyl-cyclopentaneacetic acid)


Neophaseic acid (IUPAC: (2Z,4E)-5-[(1S,3S,8S)-3,8-dihydroxy-1,5-dimethyl-6-oxabicyclo[3.2.1]octan-8-yl]-3-methylpenta-2,4-dienoate)


Phaseic acid (IUPAC: (2Z,4E)-5-[(1R,5R,8S)-8-hydroxy-1,5-dimethyl-3-oxo-6-oxabicyclo[3.2.1]octan-8-yl]-3-methylpenta-2,4-dienoic acid)


Plant growth regulator


Salicylic acid (IUPAC: 2-hydroxybenzoic acid)


2,3,5-Triphenyltetrazolium chloride (IUPAC: 2,3,5-triphenyl-2H-tetrazolium chloride)



The authors are grateful to Nicola Pecchioni for providing the barley (H. vulgare L. cv. Nure) seeds, to Mónika E. Fehér for her technical assistance and to the Applied Genomics Department (AI CAR HAS) for the use of laboratory equipment. This study was supported by the Hungarian Scientific Research Fund (OTKA K84190), the Hungarian TÁMOP-4.2.2/B-10/1-2010-0025 grant, the Norwegian Financial Mechanism (OTKA NNF78866), the Czech Science Foundation (project no. 522/09/2058), and the European Union (Agrisafe 203288—EU-FP7-426 REGPOT 2007-1). BT is a Bolyai Fellow of the Hungarian Academy of Sciences.

Supplementary material

12033_2012_9569_MOESM1_ESM.tif (753 kb)
Supplemental Figure 1 Effect of Dicamba on hormone levels of endogenous auxins after four days of cold treatment. Relative hormone levels of endogenous auxins: indole-3-acetic acid (IAA), IAA-aspartate (IAA-Asp) and IAA-glucose ester (IAA-GE) in Dicamba-treated, Dic(+), and Dicamba-free, Dic(−), calli (mean ± SE). The results show the hormone levels in cold-treated samples after four days of hardening relative to the unhardened control (grown at +24 °C) (%). Three biological repeats are given for each data point. Statistical analysis was performed using unpaired (Student’s) and Welch’s t test (* 0.01 < p<0.05; ** 0.001 < p<0.01). (TIFF 752 kb)
12033_2012_9569_MOESM2_ESM.tif (1.3 mb)
Supplemental Figure 2 Effect of Dicamba on hormone levels of ABA and its catabolites after four days of cold treatment. Relative hormone levels of endogenous ABA and dihydrophaseic acid (DPA) (A), and phaseic acid (PA) and neophaseic acid (Neo-PA) (B) in Dicamba-treated, Dic(+), and Dicamba-free, Dic(−), calli (mean ± SE). The results show the hormone levels in cold-treated samples after four days of hardening relative to the unhardened control (grown at +24 °C) (%). Three biological repeats are given for each data point. Statistical analysis was performed using unpaired (Student’s) and Welch’s t test (* 0.01 < p<0.05; ** 0.001 < p<0.01). (TIFF 1319 kb)
12033_2012_9569_MOESM3_ESM.tif (567 kb)
Supplemental Figure 3 Effect of Dicamba on hormone levels of jasmonic acid and salicylic acid after four days of cold treatment. Relative hormone levels of endogenous jasmonic acid (JA) and salicylic acid (SA) in Dicamba-treated, Dic(+), and Dicamba-free, Dic(−), calli (mean ± SE). The results show the hormone levels in cold-treated samples after four days of hardening relative to the unhardened control (grown at +24 °C) (%). Three biological repeats are given for each data point. Statistical analysis was performed using unpaired (Student’s) and Welch’s t test (* 0.01 < p<0.05; ** 0.001 < p<0.01). (TIFF 566 kb)


  1. 1.
    Takahashi, R., & Yasuda, S. (1971). Genetics of earliness and growth habit in barley. In R. A. Nilan (Ed.), Barley genetics II. Proceedings of the second international barley genetics symposium (pp. 388–408). Pullman: Washington State University Press.Google Scholar
  2. 2.
    Levitt, J. (1980). Responses of plants to environmental stresses 1. Chilling, freezing and high temperature stresses. New York: Academic Press.Google Scholar
  3. 3.
    Thomashow, M. F. (1999). Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology, 50, 571–599.CrossRefGoogle Scholar
  4. 4.
    Gilmour, S., & Thomashow, M. F. (1991). Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Molecular Biology, 17, 1233–1240.CrossRefGoogle Scholar
  5. 5.
    Shinozaki, K., & Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology, 3, 217–223.Google Scholar
  6. 6.
    Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B. H., Hong, X. H., Agarwal, M., et al. (2003). ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 17, 1043–1054.CrossRefGoogle Scholar
  7. 7.
    Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G., Schabenberger, O., & Thomashow, M. F. (1998). Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 280, 104–106.CrossRefGoogle Scholar
  8. 8.
    Choi, D. W., Rodriguez, E. M., & Close, T. J. (2002). Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiology, 129, 1781–1787.CrossRefGoogle Scholar
  9. 9.
    Skinner, J. S., von Zitzewitz, J., Szucs, P., Marquez-Cedillo, L., & Filichkin, T. (2005). Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Molecular Biology, 59, 533–551.CrossRefGoogle Scholar
  10. 10.
    Francia, E., Barabaschi, D., Tondelli, A., Laidò, G., Rizza, F., Stanca, A. M., et al. (2007). Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theoretical and Applied Genetics, 115, 1083–1091.CrossRefGoogle Scholar
  11. 11.
    Jaglo, K. R., Kleff, S., Amundsen, K. L., Zhang, X., Haake, V., Zhang, J. Z., et al. (2001). Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiology, 127, 910–917.CrossRefGoogle Scholar
  12. 12.
    Shen, Y. G., Zhang, W. K., He, S. J., Zhang, J. S., Liu, Q., & Chen, S. Y. (2003). An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theoretical and Applied Genetics, 106, 923–930.Google Scholar
  13. 13.
    Stockinger, E. J., Skinner, J. S., Gardner, K. G., Francia, E., & Pecchioni, N. (2007). Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. The Plant Journal, 51, 308–321.CrossRefGoogle Scholar
  14. 14.
    Campoli, C., Matus-Cádiz, M. A., Pozniak, C. J., Cattivelli, L., & Fowler, D. B. (2009). Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. Molecular Genetics and Genomics, 282, 141–152.CrossRefGoogle Scholar
  15. 15.
    Kume, S., Kobayashi, F., Ishibashi, M., Ohno, K., Nakamura, C., & Takumi, S. (2005). Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes & Genetic Systems, 80, 185–197.CrossRefGoogle Scholar
  16. 16.
    Vágújfalvi, A., Aprile, A., Miller, A., Dubcovsky, J., Delugu, G., Galiba, G., et al. (2005). The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Molecular Genetics and Genomics, 274, 506–514.CrossRefGoogle Scholar
  17. 17.
    Knox, A. K., Li, C., Vágújfalvi, A., Galiba, G., Stockinger, E. J., & Dubcovsky, J. (2008). Identification of candidate CBF genes for the frost tolerance locus Fr-Am2 in Triticum monococcum. Plant Molecular Biology, 67, 257–270.CrossRefGoogle Scholar
  18. 18.
    Fricano, A., Rizza, F., Faccioli, P., Pagani, D., Pavan, P., Stella, A., et al. (2009). Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theoretical and Applied Genetics, 119, 1335–1348.CrossRefGoogle Scholar
  19. 19.
    Badawi, M., Reddy, Y. V., Agharbaoui, Z., Tominaga, Y., Danyluk, J., Sarhan, F., et al. (2008). Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. Plant and Cell Physiology, 49, 1237–1249.CrossRefGoogle Scholar
  20. 20.
    Vágújfalvi, A., Crosatti, C., Galiba, G., Dubcovsky, J., & Cattivelli, L. (2000). Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in frost tolerant and sensitive genotypes. Molecular and General Genetics, 263, 194–200.CrossRefGoogle Scholar
  21. 21.
    Crosatti, C., Soncini, C., Stanca, A. M., & Cattivelli, C. (1995). The accumulation of a cold-regulated chloroplastic protein is light-dependent. Planta, 196, 458–463.CrossRefGoogle Scholar
  22. 22.
    Crosatti, C., de Laureto, P. P., Bassi, R., & Cattivelli, L. (1999). The interaction between cold and light controls the expression of the cold-regulated gene cor14b and the accumulation of the corresponding protein. Plant Physiology, 119, 671–680.CrossRefGoogle Scholar
  23. 23.
    Dal Bosco, C., Busconi, M., Govoni, C., Baldi, P., Stanca, A. M., Crosatti, C., et al. (2003). Cor gene expression in barley mutants affected in chloroplast development and photosynthetic electron transport. Plant Physiology, 131, 793–802.CrossRefGoogle Scholar
  24. 24.
    Crosatti, C., Nevo, E., Stanca, A. M., & Cattivelli, L. (1996). Genetic analysis of the accumulation of COR14 proteins in wild (Hordeum spontaneum) and cultivated (Hordeum vulgare) barley. Theoretical and Applied Genetics, 93, 975–981.CrossRefGoogle Scholar
  25. 25.
    Fowler, D. B., Chauvin, L. P., Limin, A. E., & Sarhan, F. (1996). The regulatory role of vernalization in the expression of low-temperature-induced genes in wheat and rye. Theoretical and Applied Genetics, 93, 554–559.CrossRefGoogle Scholar
  26. 26.
    Limin, A. E., Danyluk, J., Chauvin, L. P., Fowler, D. B., & Sarhan, F. (1997). Chromosome mapping of low-temperature induced Wcs120 family genes and regulation of cold-tolerance expression in wheat. Molecular and General Genetics, 253, 720–727.CrossRefGoogle Scholar
  27. 27.
    Danyluk, J., Houde, M., Rassart, E., & Sarhan, F. (1994). Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species. FEBS Letters, 344, 20–24.CrossRefGoogle Scholar
  28. 28.
    NDong, C. N., Danyluk, J., Wilson, K. E., Pocock, T., Huner, N. P. A., & Sarhan, F. (2002). Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiology, 129, 1368–1381.CrossRefGoogle Scholar
  29. 29.
    Rizza, F., Crosatti, C., Stanca, A. M., & Cattivelli, L. (1994). Studies for assessing the influence of hardening on cold tolerance of barley genotypes. Euphytica, 75, 131–138.CrossRefGoogle Scholar
  30. 30.
    Leung, J., & Giraudat, J. (1998). Abscisic acid signal transduction. Annual Review of Plant Physiology, 49, 199–222.CrossRefGoogle Scholar
  31. 31.
    Xiong, L., Ishitani, M., & Zhu, J. K. (1999). Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis thaliana. Plant Physiology, 119, 205–211.CrossRefGoogle Scholar
  32. 32.
    Chinnusamy, V., Schumaker, K., & Zhu, J. K. (2004). Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany, 55, 225–236.CrossRefGoogle Scholar
  33. 33.
    Ding, C. K., Wang, C. Y., Gross, K. C., & Smith, D. L. (2002). Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta, 214, 895–901.CrossRefGoogle Scholar
  34. 34.
    Janda, T., Szalai, G., Tari, I., & Páldi, E. (1999). Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta, 208, 175–180.CrossRefGoogle Scholar
  35. 35.
    Gusta, L. V., Boyachek, M., & Fowler, D. B. (1978). A system for freezing biological materials. Horticultural Science, 13, 171–172.Google Scholar
  36. 36.
    Fowler, D. B., Gusta, L. V., & Tyler, N. J. (1981). Selection for winter-hardiness in wheat. III. Screening methods. Crop Science, 21, 896–901.CrossRefGoogle Scholar
  37. 37.
    Sutka, J. (1981). Genetic studies of frost resistance in wheat. Theoretical and Applied Genetics, 59, 145–152.CrossRefGoogle Scholar
  38. 38.
    O’Connor, B. J., Reaney, M. J. T., & Gusta, L. V. (1993). A practical method of assessing the freezing tolerance of large populations of field grown winter cereals. Canadian Journal of Plant Science, 73, 149–153.CrossRefGoogle Scholar
  39. 39.
    Chen, T. H. H., & Gusta, L. V. (1983). Abscisic acid-induced freezing resistance in cultured plants. Plant Physiology, 73, 71–75.CrossRefGoogle Scholar
  40. 40.
    Keith, C. N., & McKersie, B. D. (1986). The effect of abscisic acid on the freezing tolerance of callus cultures of Lotus corniculatus L. Plant Physiology, 80, 766–770.CrossRefGoogle Scholar
  41. 41.
    Tabaei-Aghdaei, S. R., Pearce, R. S., & Harrison, P. (2003). Sugars regulate cold-induced gene expression and freezing-tolerance in barley cell cultures. Journal of Experimental Botany, 54, 1565–1575.CrossRefGoogle Scholar
  42. 42.
    Sasaki, Y., Takahashi, K., Oono, Y., Seki, M., Yoshida, R., Shinozaki, K., et al. (2008). Characterization of growth-phase-specific responses to cold in Arabidopsis thaliana suspension-cultured cells. Plant, Cell and Environment, 31, 354–365.CrossRefGoogle Scholar
  43. 43.
    Zimmerman, J. L. (1993). Somatic embryogenesis: A model for early development in higher plants. The Plant Cell, 5, 1411–1423.Google Scholar
  44. 44.
    Sjolund, R. D., & Weier, T. E. (1971). An ultrastructural study of chloroplast structure and dedifferentiation in tissue culture of Streptanthus tortuosus (Cruciferae). American Journal of Botany, 58, 172–181.CrossRefGoogle Scholar
  45. 45.
    Scheunert, E. U., Shamina, Z. B., & Koblitz, H. (1977). Studies on barley calluses cultured in vitro I. Establishment, maintenance and growth of 2 different tissue strains. Plant Science Letters, 10, 313–318.CrossRefGoogle Scholar
  46. 46.
    Sarma, K. S., & Rogers, S. M. D. (1998). Plant regeneration and multiplication of the emergent wetland monocot Juncus accuminatus. Plant Cell Reports, 17, 656–660.CrossRefGoogle Scholar
  47. 47.
    Bäurle, I., & Laux, T. (2003). Apical meristems: The plant’s fountain of youth. BioEssays, 25, 961–970.CrossRefGoogle Scholar
  48. 48.
    Laux, T. (2003). The stem cell concept in plants: A matter of debate. Cell, 113, 281–283.CrossRefGoogle Scholar
  49. 49.
    Schenk, R. U., & Hildebrandt, A. C. (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany, 50, 199–204.CrossRefGoogle Scholar
  50. 50.
    Nabors, M. W., Heyser, J. W., Dykes, T. A., & DeMott, K. I. (1983). Long-duration, high-frequency plant regeneration from cereal tissue cultures. Planta, 157, 385–391.CrossRefGoogle Scholar
  51. 51.
    Michalczuk, L., Cooke, T. J., & Cohen, J. D. (1992). Auxin levels at different stages of carrot embryogenesis. Phytochemistry, 32, 1097–1103.CrossRefGoogle Scholar
  52. 52.
    Chen, P. M., & Gusta, L. V. (1982). Cold-acclimation of wheat and smooth brome-grass cell-suspensions. Canadian Journal of Botany, 60, 1207–1211.CrossRefGoogle Scholar
  53. 53.
    Ribnicky, D. M., Ilic, N., Cohen, J. D., & Cooke, T. J. (1996). The effects of exogenous auxins on endogenous indole-3-acetic acid metabolism—the implications for carrot somatic embryogenesis. Plant Physiology, 112, 549–558.Google Scholar
  54. 54.
    Jiménez, V. M., & Bangerth, F. (2001). Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot. Physiologia Plantarum, 111, 389–395.CrossRefGoogle Scholar
  55. 55.
    Jiménez, V. M., Guevara, E., Herrera, J., & Bangerth, F. (2005). Evolution of endogenous hormone concentration in embryogenic cultures of carrot during early expression of somatic embryogenesis. Plant Cell Reports, 23, 567–572.CrossRefGoogle Scholar
  56. 56.
    Kosova, K., Prasil, I. T., Vitamvas, P., Dobrev, P. I., Motyka, V., Floková, K., et al. (2012). Complex phytohormon responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. Journal of Plant Physiology, 169, 567–576.CrossRefGoogle Scholar
  57. 57.
    Cutler, A. J., Squires, T. M., Loewen, M. K., & Balsevich, J. J. (1997). Induction of (+)-abscisic acid 8′ hydroxylase by (+)-abscisic acid in cultured maize cells. Journal of Experimental Botany, 48, 1787–1795.Google Scholar
  58. 58.
    Scott, P., Lyne, R. L., & ap Rees, T. (1995). Metabolism of maltose and sucrose by microspores isolated from barley (Hordeum vulgare L.). Planta, 197, 435–441.CrossRefGoogle Scholar
  59. 59.
    Blanc, G., Lardet, L., Martin, A., Jacob, J. L., & Carron, M. P. (2002). Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Müll. Arg.). Journal of Experimental Botany, 53, 1453–1462.CrossRefGoogle Scholar
  60. 60.
    Rose, D., Martin, S. M., & Clay, P. P. F. (1972). Metabolic rates for major nutrients in suspension culture of plant cells. Canadian Journal of Botany, 50, 1301–1308.CrossRefGoogle Scholar
  61. 61.
    Temel, A., Kartal, G., & Gözükirmizi, N. (2008). Genetic and epigenetic variations in barley callus cultures. Biotechnology & Biotechnological Equipment, 22, 911–914.Google Scholar
  62. 62.
    Towill, L. E., & Mazur, P. (1975). Studies on the reduction of 2,3,5-triphenyltretrazolim chloride as a viability assay for plant tissue cultures. Canadian Journal of Botany, 53, 1097–1102.CrossRefGoogle Scholar
  63. 63.
    Rapacz, M., Wolanin, B., Hura, K., & Tyrka, M. (2008). The effects of cold acclimation on photosynthetic apparatus and the expression of COR14b in four genotypes of barley (Hordeum vulgare) contrasting in their tolerance to freezing and high-light treatment in cold conditions. Annals of Botany, 101, 689–699.CrossRefGoogle Scholar
  64. 64.
    Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt Method. Methods, 25, 402–408.CrossRefGoogle Scholar
  65. 65.
    Dobrev, P. I., & Kaminek, M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. Journal of Chromatography A, 950, 21–29.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ildikó Vashegyi
    • 1
  • Zsuzsa Marozsán-Tóth
    • 1
  • Gábor Galiba
    • 1
    • 2
  • Petre I. Dobrev
    • 3
  • Radomira Vankova
    • 3
  • Balázs Tóth
    • 1
  1. 1.Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary
  2. 2.Research Institute of Chemical and Process EngineeringUniversity of PannoniaVeszprémHungary
  3. 3.Laboratory of Hormonal Regulations in Plants, Institute of Experimental BotanyAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations