Molecular Biotechnology

, Volume 54, Issue 2, pp 292–303

The Xerophyta viscosa Aldose Reductase (ALDRXV4) Confers Enhanced Drought and Salinity Tolerance to Transgenic Tobacco Plants by Scavenging Methylglyoxal and Reducing the Membrane Damage

  • Deepak Kumar
  • Preeti Singh
  • Mohd Aslam Yusuf
  • Chandrama Prakash Upadhyaya
  • Suchandra Deb Roy
  • Thomas Hohn
  • Neera Bhalla Sarin
Research

Abstract

We report the efficacy of an aldose reductase (ALDRXV4) enzyme from Xerophyta viscosa Baker in enhancing the prospects of plant’s survival under abiotic stress. Transgenic tobacco plants overexpressing ALDRXV4 cDNA showed alleviation of NaCl and mannitol-induced abiotic stress. The transgenic plants survived longer periods of water deficiency and salinity stress and exhibited improved recovery after rehydration as compared to the wild type plants. The increased synthesis of aldose reductase in transgenic plants correlated with reduced methylglyoxal and malondialdehyde accumulation and an elevated level of sorbitol under stress conditions. In addition, the transgenic lines showed better photosynthetic efficiency, less electrolyte damage, greater water retention, higher proline accumulation, and favorable ionic balance under stress conditions. Together, these findings suggest the potential of engineering aldose reductase levels for better performance of crop plants growing under drought and salt stress conditions.

Keywords

Abiotic stress Aldose reductase Methylglyoxal Transgenics Xerophyta viscosa 

Abbreviations

FW

Fresh weight

MDA

Malondialdehyde

MG

Methylglyoxal

ROS

Reactive oxygen species

RWC

Relative water content

TW

Turgid weight

WT

Wild type

References

  1. 1.
    Knight, H., & Knight, M. R. (2001). Abiotic stress signalling pathways: Specificity and cross-talk. Trends in Plant Science, 6, 262–267.CrossRefGoogle Scholar
  2. 2.
    Cushman, J. C., & Bohnert, H. J. (2000). Genomic approaches to plant stress tolerance. Current Opinion in Plant Biology, 3, 117–124.CrossRefGoogle Scholar
  3. 3.
    Yadav, S. K., Singla-Pareek, S. L., Ray, M., Reddy, M. K., & Sopory, S. K. (2005). Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochemical and Biophysical Research Communications, 337, 61–67.CrossRefGoogle Scholar
  4. 4.
    Pitzschke, A., Forzani, C., & Hirt, H. (2006). Reactive oxygen species signaling in plants. Antioxidants & Redox Signaling, 8, 1757–1764.CrossRefGoogle Scholar
  5. 5.
    Kalapos, M. P. (2008). The tandem of free radicals and methylglyoxal. Chemico-Biological Interactions, 171, 251–271.CrossRefGoogle Scholar
  6. 6.
    Thornalley, P. J. (1990). The glyoxalase system: New developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochemical Journal, 269, 1–11.Google Scholar
  7. 7.
    Vander Jagt, D. L., & Hunsaker, L. A. (2003). Methylglyoxal metabolism and diabetic complications: Roles of aldose reductase, glyoxalase-I, betaine aldehyde dehydro-genase and 2-oxoaldehyde dehydrogenase. Chemico-Biological Interactions, 143, 341–351.CrossRefGoogle Scholar
  8. 8.
    Bartels, D., & Nelson, D. (1994). Approaches to improve stress tolerance using molecular genetics. Plant, Cell and Environment, 17, 659–667.CrossRefGoogle Scholar
  9. 9.
    Jin, Y., & Penning, T. M. (2007). Aldo–keto reductases and bioactivation/detoxification. Annual Review of Pharmacology and Toxicology, 47, 263–292.CrossRefGoogle Scholar
  10. 10.
    Lee, S. P., & Chen, T. H. H. (1993). Molecular cloning of abscisic acid-responsive mRNAs expressed during the induction of freezing tolerance in bromegrass (Bromus inermis Leyss) suspension culture. Plant Physiology, 101, 1089–1096.CrossRefGoogle Scholar
  11. 11.
    Li, B., & Foley, M. E. (1995). Cloning and characterization of differentially expressed genes in imbibed dormant and after ripened Avena fatua embryos. Plant Molecular Biology, 29, 823–831.CrossRefGoogle Scholar
  12. 12.
    Turoczy, Z., Kis, P., Torok, K., Cserhati, M., Lendvai, A., Dudits, D., et al. (2011). Overproduction of a rice aldo–keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification. Plant Molecular Biology, 75, 399–412.CrossRefGoogle Scholar
  13. 13.
    Mundree, S. G., Whittaker, A., Thomson, J. A., & Farrant, L. M. (2000). An aldose reductase homolog from the resurrection plant Xerophyta viscosa Baker. Planta, 211, 693–700.CrossRefGoogle Scholar
  14. 14.
    Höfgen, R., & Willmitzer, L. (1988). Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research, 16, 9877.CrossRefGoogle Scholar
  15. 15.
    Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G., & Fraley, R. T. (1985). A simple and general method for transferring genes into plants. Science, 227, 1229–1231.CrossRefGoogle Scholar
  16. 16.
    Rogers, S. O., & Bendich, A. J. (1994). Extraction of total cellular DNA from plants, algae and fungi. In S. B. Gelvin & R. A. Schilperoort (Eds.), Plant molecular biology manual, D1 (pp. 1–8). Dordrecht: Kluwer Academic Press.Google Scholar
  17. 17.
    Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning. A laboratory manual. New York: Cold Spring Harbor.Google Scholar
  18. 18.
    Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  19. 19.
    Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National academy of Sciences of the United States of America, 76, 4350–4354.CrossRefGoogle Scholar
  20. 20.
    Arnon, D. J. (1949). Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15.CrossRefGoogle Scholar
  21. 21.
    Sairam, R. K., & Srivastava, G. C. (2002). Changes in antioxidant activity in subcellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science, 162, 897–904.CrossRefGoogle Scholar
  22. 22.
    Hayman, S., & Kinoshita, J. H. (1965). Isolation and properties of lens aldose reductase. Journal of Biological Chemistry, 240, 877–882.Google Scholar
  23. 23.
    Pommerrenig, B., Papini-Terzi, F. S., & Sauer, N. (2007). Differential regulation of sorbitol and sucrose loading into the phloem of Plantago major in response to salt stress. Plant Physiology, 144, 1029–1038.CrossRefGoogle Scholar
  24. 24.
    Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.CrossRefGoogle Scholar
  25. 25.
    Fan, L., Zheng, S., & Wang, X. (1997). Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell, 9, 2183–2196.Google Scholar
  26. 26.
    Sherwin, H., & Farrant, J. M. (1996). Differences in rehydration of three desiccation-tolerant angiosperm species. Annals of Botany, 78, 703–710.CrossRefGoogle Scholar
  27. 27.
    Oliver, M. J., & Bewley, J. D. (1997). Desiccation-tolerance of plant tissues: A mechanistic overview. Horticultural Reviews, 18, 171–213.Google Scholar
  28. 28.
    Kolb, N. S., Hunsaker, L. A., & Vander Jagt, D. L. (1994). Aldose reductase-catalyzed reduction of acrolein: Implications in cyclophosphamide toxicity. Molecular Pharmacology, 45, 797–801.Google Scholar
  29. 29.
    Colrat, S., Latche, A., Guis, M., Pech, J. C., Bouzayen, M., Fallot, J., et al. (1999). Purification and characterization of a NADPH-dependent aldehyde reductase from mung bean that detoxifies eutypine, a toxin from Eutypa lata. Plant Physiology, 119, 621–626.CrossRefGoogle Scholar
  30. 30.
    Oberschall, A., Deak, M., Torok, K., Sass, L., Vass, I., Kovacs, I., et al. (2000). A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant Journal, 24, 437–446.CrossRefGoogle Scholar
  31. 31.
    Hideg, É., Nagy, T., Oberschall, A., Dudits, D., & Vass, I. (2003). Detoxification function of aldose/aldehyde reductase during drought and ultraviolet-B (280–320 nm) stresses. Plant, Cell and Environment, 26, 513–522.CrossRefGoogle Scholar
  32. 32.
    Vander Jagt, D. L., Hunsaker, L. A., Vander Jagt, T. J., Gomez, M. S., Gonzales, D. M., Deck, L. M., et al. (1997). Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes. Biochemical Pharmacology, 53, 1133–1140.CrossRefGoogle Scholar
  33. 33.
    Hegedus, A., Erdei, S., Janda, T., Toth, E., Horvath, G. V., & Dudits, D. (2004). Transgenic tobacco plants overproducing alfalfa aldose/aldehyde reductase show higher tolerance to low temperature and cadmium stress. Plant Science, 166, 1329–1333.CrossRefGoogle Scholar
  34. 34.
    Abordo, E. A., Minhas, H. S., & Thornalley, P. J. (1999). Accumulation of alpha-oxoaldehydes during oxidative stress: A role in cytotoxicity. Biochemical Pharmacology, 58, 641–648.CrossRefGoogle Scholar
  35. 35.
    Martins, A. M., Cordeiro, C. A., & Ponces Freire, A. M. (2001). In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae. FEBS Letters, 499, 41–44.CrossRefGoogle Scholar
  36. 36.
    Singla-Pareek, S. L., Yadav, S. K., Pareek, A., Reddy, M. K., & Sopory, S. K. (2006). Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiology, 140, 613–623.CrossRefGoogle Scholar
  37. 37.
    Mishra, R. K., & Singhal, G. S. (1992). Function of photosynthetic apparatus of intact wheat leaves under high light and heat stress and its relationship with peroxidation of thylakoid lipids. Plant Physiology, 98, 1–6.CrossRefGoogle Scholar
  38. 38.
    Harbinson, J., Genty, B., & Baker, N. R. (1989). Relationship between the quantum efficiencies of photosystems I and II in pea leaves. Plant Physiology, 90, 1029–1034.CrossRefGoogle Scholar
  39. 39.
    Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3–16.CrossRefGoogle Scholar
  40. 40.
    Hare, P. D., Cress, W. A., & Van Staden, J. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment, 21, 535–553.CrossRefGoogle Scholar
  41. 41.
    Hanson, A. D., & Burnet, M. (1994). Evolution and metabolic engineering of osmoprotectant accumulation in higher plants. In J. H. Cherry (Ed.), Cell biology: Biochemical and cellular mechanism of stress tolerance in plants (pp. 291–302). Berlin: Springer.CrossRefGoogle Scholar
  42. 42.
    Rus, A., Yokoi, S., Sharkhuu, A., Reddy, M., Lee, B. H., Matsumoto, T. K., et al. (2001). AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proceedings of the National academy of Sciences of the United States of America, 98, 14150–14155.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Deepak Kumar
    • 1
  • Preeti Singh
    • 1
  • Mohd Aslam Yusuf
    • 1
  • Chandrama Prakash Upadhyaya
    • 1
    • 3
  • Suchandra Deb Roy
    • 1
  • Thomas Hohn
    • 2
  • Neera Bhalla Sarin
    • 1
  1. 1.School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Institute of BotanyUniversity of BaselBaselSwitzerland
  3. 3.Department of BotanyGuru Ghasidas Central UniversityBilaspurIndia

Personalised recommendations