Advertisement

Molecular Biotechnology

, Volume 53, Issue 1, pp 19–28 | Cite as

A Dual-Mode Single-Molecule Fluorescence Assay for the Detection of Expanded CGG Repeats in Fragile X Syndrome

  • Brian Cannon
  • Cynthia Pan
  • Liangjing Chen
  • Andrew G. Hadd
  • Rick RussellEmail author
Research

Abstract

Fragile X syndrome is the leading cause of inherited mental impairment and is associated with expansions of CGG repeats within the FMR1 gene. To detect expanded CGG repeats, we developed a dual-mode single-molecule fluorescence assay that allows acquisition of two parallel, independent measures of repeat number based on (1) the number of Cy3-labeled probes bound to the repeat region and (2) the physical length of the electric field-linearized repeat region, obtained from the relative position of a single Cy5 dye near the end of the repeat region. Using target strands derived from cell-line DNA with defined numbers of CGG repeats, we show that this assay can rapidly and simultaneously measure the repeats of a collection of individual sample strands within a single field of view. With a low occurrence of false positives, the assay differentiated normal CGG repeat lengths (CGG N , N = 23) and expanded CGG repeat lengths (CGG N , N = 118), representing a premutation disease state. Further, mixtures of these DNAs gave results that correlated with their relative populations. This strategy may be useful for identifying heterozygosity or for screening collections of individuals, and it is readily adaptable for screening other repeat disorders.

Keywords

Fragile X syndrome Single molecule Total internal reflection fluorescence microscopy (TIRFM) Heterozygosity Dual mode Photobleaching Diagnostic assay 

References

  1. 1.
    Brouwer, J. R., Willemsen, R., & Oostra, B. A. (2009). Microsatellite repeat instability and neurological disease. Bioessays, 1, 71–83.CrossRefGoogle Scholar
  2. 2.
    López Castel, A., Cleary, J. D., & Pearson, C. E. (2010). Repeat instability as the basis for human diseases and as a potential target for therapy. Nature Reviews Molecular Cell Biology, 3, 165–170.CrossRefGoogle Scholar
  3. 3.
    McMurray, C. T. (2010). Mechanisms of trinucleotide repeat instability during human development. Nature Reviews Genetics, 11, 786–799.CrossRefGoogle Scholar
  4. 4.
    Penagarikano, O., Mulle, J. G., & Warren, S. T. (2007). The pathophysiology of fragile X syndrome. Annual Review of Genomics and Human Genetics, 8, 109–129.CrossRefGoogle Scholar
  5. 5.
    Hagerman, R. J., Hull, C. E., Safanda, J. F., Carpenter, I., Staley, L. W., O’Connor, R. A., et al. (1994). High functioning fragile X males: Demonstration of an unmethylated fully expanded FMR-1 mutation associated with protein expression. American Journal of Medical Genetics, 4, 298–308.CrossRefGoogle Scholar
  6. 6.
    Coffey, S. M., Cook, K., Tartaglia, N., Tassone, F., Nguyen, D. V., Pan, R., et al. (2008). Expanded clinical phenotype of women with the FMR1 premutation. American Journal of Medical Genetics A, 146A, 1009–1016.CrossRefGoogle Scholar
  7. 7.
    Terracciano, A., Pomponi, M. G., Marino, G. M., Chiurazzi, P., Rinaldi, M. M., Dobosz, M., et al. (2004). Expansion to full mutation of a FMR1 intermediate allele over two generations. European Journal of Human Genetics, 12, 333–336.CrossRefGoogle Scholar
  8. 8.
    Fernandez-Carvajal, I., Lopez Posadas, B., Pan, R., Raske, C., Hagerman, P. J., & Tassone, F. (2009). Expansion of an FMR1 grey-zone allele to a full mutation in two generations. Journal of Molecular Diagnostics, 11, 306–310.CrossRefGoogle Scholar
  9. 9.
    Chen, L., Hadd, A., Sah, S., Filipovic-Sadic, S., Krosting, J., Sekinger, E., et al. (2010). An information-rich CGG repeat primed PCR that detects the full range of fragile X expanded alleles and minimizes the need for southern blot analysis. Journal of Molecular Diagnostics, 12, 589–600.CrossRefGoogle Scholar
  10. 10.
    Lyon, E., Laver, T., Yu, P., Jama, M., Young, K., Zoccoli, M., et al. (2010). A simple, high-throughput assay for fragile X expanded alleles using triple repeat primed PCR and capillary electrophoresis. Journal of Molecular Diagnostics, 12, 505–511.CrossRefGoogle Scholar
  11. 11.
    Hantash, F. M., Goos, D. G., Tsao, D., Quan, F., Buller-Burckle, A., Peng, M., et al. (2010). Qualitative assessment of FMR1 (CGG)n triplet repeat status in normal, intermediate, premutation, full mutation, and mosaic carriers in both sexes: Implications for fragile X syndrome carrier and newborn screening. Genetics Medicine, 12, 162–173.CrossRefGoogle Scholar
  12. 12.
    Khaniani, M. S., Kalitsis, P., Burgess, T., & Slater, H. R. (2008). An improved diagnostic PCR assay for identification of cryptic heterozygosity for CGG triplet repeat alleles in the fragile X gene (FMR1). Molecular Cytogenetics, 1, 5.CrossRefGoogle Scholar
  13. 13.
    Todorov, T., Todorova, A., Georgieva, B., & Mitev, V. (2010). A unified rapid PCR method for detection of normal and expanded trinucleotide alleles of CAG repeats in huntington chorea and CGG repeats in fragile X syndrome. Molecular Biotechnology, 2, 150–154.CrossRefGoogle Scholar
  14. 14.
    Filipovic-Sadic, S., Sah, S., Chen, L., Krosting, J., Sekinger, E., Zhang, W., et al. (2010). A novel FMR1 PCR method for the routine detection of low abundance expanded alleles and full mutations in fragile X syndrome. Clinical Chemistry, 56, 399–408.Google Scholar
  15. 15.
    Pushkarev, D., Neff, N. F., & Quake, S. R. (2009). Single-molecule sequencing of an individual human genome. Nature Biotechnology, 27, 847–850.CrossRefGoogle Scholar
  16. 16.
    Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., et al. (2009). Real-time DNA sequencing from single polymerase molecules. Science, 323, 133–138.CrossRefGoogle Scholar
  17. 17.
    Schlapak, R., Kinns, H., Wechselberger, C., Hesse, J., & Howorka, S. (2007). Sizing trinucleotide repeat sequences by single-molecule analysis of fluorescence brightness. ChemPhysChem, 8, 1618–1621.CrossRefGoogle Scholar
  18. 18.
    Jo, K., Dhingra, D. M., Odijk, T., de Pablo, J. J., Graham, M. D., Runnheim, R., et al. (2007). A single-molecule barcoding system using nanoslits for DNA analysis. Proceedings of the National Academy of Sciences USA, 8, 2673–2678.CrossRefGoogle Scholar
  19. 19.
    Xiao, M., Gordon, M. P., Phong, A., Ha, C., Chan, T. F., Cai, D., et al. (2007). Determination of haplotypes from single DNA molecules: A method for single-molecule barcoding. Human Mutation, 9, 913–921.CrossRefGoogle Scholar
  20. 20.
    Burton, R. E., White, E. J., Foss, T. R., Phillips, K. M., Meltzer, R. H., Kojanian, N., et al. (2010). A microfluidic chip-compatible bioassay based on single-molecule detection with high sensitivity and multiplexing. Lab on a Chip, 10, 843–851.CrossRefGoogle Scholar
  21. 21.
    Chan, E. Y., Goncalves, N. M., Haeusler, R. A., Hatch, A. J., Larson, J. W., Maletta, A. M., et al. (2004). DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Research, 14, 137–1146.CrossRefGoogle Scholar
  22. 22.
    Protozanova, E., Zhang, M., White, E. J., Mollova, E. T., Broeck, D. T., Fridrikh, S. V., et al. (2010). Fast high-resolution mapping of long fragments of genomic DNA based on single-molecule detection. Analytical Biochemistry, 1, 83–90.CrossRefGoogle Scholar
  23. 23.
    Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G., & Bayley, H. (2009). Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proceedings of the National Academy of Sciences USA, 106, 7702–7707.CrossRefGoogle Scholar
  24. 24.
    Levine, P. M., Gong, P., Levicky, R., & Shepard, K. L. (2009). Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics. Biosensor Bioelectronics, 7, 1995–2001.CrossRefGoogle Scholar
  25. 25.
    Rothberg, J. M., Hinz, W., Rearick, T. M., Schultz, J., Mileski, W., Davey, M., et al. (2011). An integrated semiconductor device enabling non-optical genome sequencing. Nature, 475, 348–352.CrossRefGoogle Scholar
  26. 26.
    Yildiz, A., Forkey, J. N., McKinney, S. A., Ha, T., Goldman, Y. E., & Selvin, P. R. (2003). Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science, 300, 2061–2065.CrossRefGoogle Scholar
  27. 27.
    Qu, X., Wu, D., Mets, L., & Scherer, N. F. (2004). Nanometer-localized multiple single-molecule fluorescence microscopy. Proceedings of the National Academy of Sciences USA, 101, 11298–11303.CrossRefGoogle Scholar
  28. 28.
    Gordon, M. P., Ha, T., & Selvin, P. R. (2004). Single-molecule high-resolution imaging with photobleaching. Proceedings of the National Academy of Sciences USA, 101, 6462–6465.CrossRefGoogle Scholar
  29. 29.
    Churchman, L. S., Okten, Z., Rock, R. S., Dawson, J. F., & Spudich, J. A. (2005). Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proceedings of the National Academy of Sciences USA, 102, 1419–1423.CrossRefGoogle Scholar
  30. 30.
    Huang, B., Bates, M., & Zhuang, X. (2009). Super-resolution fluorescence microscopy. Annual Reviews in Biochemistry, 78, 993–1016.CrossRefGoogle Scholar
  31. 31.
    Nadel, Y., Weisman-Shomer, P., & Fry, M. (1995). The fragile X syndrome single strand d(CGG)n nucleotide repeats readily fold back to form unimolecular hairpin structures. Journal of Biological Chemistry, 270, 28970–28977.CrossRefGoogle Scholar
  32. 32.
    Paiva, A. M., & Sheardy, R. D. (2004). Influence of sequence context and length on the structure and stability of triplet repeat DNA oligomers. Biochemistry, 43, 14218–14227.CrossRefGoogle Scholar
  33. 33.
    Jarem, D. A., Huckaby, L. V., & Delaney, S. (2010). AGG interruptions in (CGG)(n) DNA repeat tracts modulate the structure and thermodynamics of non-B conformations in vitro. Biochemistry, 49, 6826–6837.CrossRefGoogle Scholar
  34. 34.
    Völker, J., Klump, H. H., & Breslauer, K. J. (2008). DNA energy landscapes via calorimetric detection of microstate ensembles of metastable macrostates and triplet repeat diseases. Proceedings of the National Academy of Sciences USA, 105, 18326–18330.CrossRefGoogle Scholar
  35. 35.
    Maier, B., Seifert, U., & Rädler, J. O. (2002). Elastic response of DNA to external electric fields in two dimensions. Europhysics Letters, 60, 622–628.CrossRefGoogle Scholar
  36. 36.
    Randall, G. C., Schultz, K. M., & Doyle, P. S. (2006). Methods to electrophoretically stretch DNA: Microcontractions, gels, and hybrid gel-microcontraction devices. Lab on a Chip, 6, 516–525.CrossRefGoogle Scholar
  37. 37.
    Nelson, P. C., Zurla, Z., Brogioli, D., Beausang, J. F., Finzi, L., & Dunlap, D. (2006). Tethered particle motion as a diagnostic of DNA tether length. Journal of Physical Chemistry B, 110, 17260–17267.CrossRefGoogle Scholar
  38. 38.
    American College of Obstetricians and Gynecologists. (2010). Carrier screening for fragile X syndrome. Committee Opinion No. 469. Obstetrics and Gynecology, 116, 1008–1010.CrossRefGoogle Scholar
  39. 39.
    Spector, E. B., & Kronquist, K. E. (2005) Fragile X: Technical standards and guidelines. ACMG standards and guidelines for clinical genetics laboratories.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Brian Cannon
    • 1
  • Cynthia Pan
    • 1
  • Liangjing Chen
    • 2
  • Andrew G. Hadd
    • 2
  • Rick Russell
    • 1
    Email author
  1. 1.Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular BiologyThe University of TexasAustinUSA
  2. 2.Asuragen Inc.AustinUSA

Personalised recommendations