Skip to main content
Log in

Expression and Functional Analysis of Two Osmotin (PR5) Isoforms with Differential Antifungal Activity from Piper colubrinum: Prediction of Structure–Function Relationship by Bioinformatics Approach

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Osmotin, a pathogenesis-related antifungal protein, is relevant in induced plant immunity and belongs to the thaumatin-like group of proteins (TLPs). This article describes comparative structural and functional analysis of the two osmotin isoforms cloned from Phytophthora-resistant wild Piper colubrinum. The two isoforms differ mainly by an internal deletion of 50 amino acid residues which separates them into two size categories (16.4 kDa—PcOSM1 and 21.5 kDa—PcOSM2) with pI values 5.6 and 8.3, respectively. Recombinant proteins were expressed in E. coli and antifungal activity assays of the purified proteins demonstrated significant inhibitory activity of the larger osmotin isoform (PcOSM2) on Phytophthora capsici and Fusarium oxysporum, and a markedly reduced antifungal potential of the smaller isoform (PcOSM1). Homology modelling of the proteins indicated structural alterations in their three-dimensional architecture. Tertiary structure of PcOSM2 conformed to the known structure of osmotin, with domain I comprising of 12 β-sheets, an α-helical domain II and a domain III composed of 2 β-sheets. PcOSM1 (smaller isoform) exhibited a distorted, indistinguishable domain III and loss of 4 β-sheets in domain I. Interestingly, an interdomain acidic cleft between domains I and II, containing an optimally placed endoglucanase catalytic pair composed of Glu–Asp residues, which is characteristic of antifungal PR5 proteins, was present in both isoforms. It is well accepted that the presence of an acidic cleft correlates with antifungal activity due to the presence of endoglucanase catalytic property, and hence the present observation of significantly reduced antifungal capacity of PcOSM1 despite the presence of a strong acidic cleft, is suggestive of the possible roles played by other structural features like domain I or/and III, in deciding the antifungal potential of osmotin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agrios, G. N. (2005). Plant pathology. Burlington: Elsevier Academic press.

    Google Scholar 

  2. Van Loon, L. C., Pierpoint, W. S., Boller, T., & Conejero, V. (1994). Recommendations for naming plant pathogenesis-related proteins. Plant Molecular Biology Reporter, 12, 245–264.

    Article  Google Scholar 

  3. Velazhahan, R., Datta, S. K., & Muthukrishnan, S. (1999). The PR-5 family: Thaumatin-like proteins in plants. In S. K. Datta & S. Muthukrishnan (Eds.), Pathogenesis-related proteins in plants (pp. 107–129). Boca Raton: CRC press.

    Google Scholar 

  4. Roberts, W. K., & Selitrennikoff, C. P. (1990). Zeamatin, an antifungal protein from maize with membrane permeabilizing activity. Journal of General Microbiology, 136, 1771–1778.

    Article  CAS  Google Scholar 

  5. Woloshuk, C. P., Meulenhoff, J. S., Sela-Buurlage, M., van den Elzen, P. J. M., & Cornelissen, B. J. C. (1991). Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell, 3, 619–628.

    CAS  Google Scholar 

  6. Abad, L. R., D’Urzo, M. P., Liu, D., Narasimhan, M. L., Reuveni, M., Zhu, J. K., et al. (1996). Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilisation. Plant Science, 118, 11–23.

    Article  CAS  Google Scholar 

  7. Liu, D., Rhodes, D., D’Urzo, M. P., Xu, Y., Narasimhan, M. L., Hasegawa, P. M., et al. (1996). In vivo and in vitro activity of truncated osmotin that is secreted into the extracellular matrix. Plant Science, 121, 123–131.

    Article  CAS  Google Scholar 

  8. Jami, S. K., Anuradha, T. S., Guruprasad, L., & Kirti, P. B. (2007). Molecular, biochemical and structural characterization of osmotin-like protein from black nightshade (Solanum nigrum). Journal of Plant Physiology, 164, 238–252.

    Article  CAS  Google Scholar 

  9. Liu, D., Raghothama, K. G., Hasegawa, P. M., & Bressan, R. A. (1994). Osmotin over expression in potato delays development of disease symptoms. Proceedings of the National Academy of Science of the United States of America, 91, 1888–1892.

    Article  CAS  Google Scholar 

  10. Datta, K., Velazhahan, R., Oliva, N., Ona, I., Mew, T., & Khush, G. S. (1999). Over-expression of the cloned rice thaumatinlike protein (PR-5) gene in transgenic rice plants enhances environmently friendly resistance to Rhizoctonia solani causing sheath blight disease. Theoretical and Applied Genetics, 98, 1138–1145.

    Article  CAS  Google Scholar 

  11. Yun, D. J., Zhao, Y., Pardo, J. M., Narasimhan, M. L., Damsz, B., & Lee, H. (1997). Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein. Proceedings of the National Academy of Science of the United States of America, 94, 7082–7087.

    Article  CAS  Google Scholar 

  12. Anžlovar, S., Dalla Serra, M., Dermastia, M., & Menestrina, G. (1998). Membrane permeabilizing activity of pathogenesis-related protein linusitin from flax seed. Molecular Plant-Microbe Interactions, 7, 610–617.

    Article  Google Scholar 

  13. Anžlovar, S., & Dermastia, M. (2003). The comparative analysis of osmotins and osmotin-like PR-5 proteins. Plant Biology, 5, 116–124.

    Article  Google Scholar 

  14. Ibeas, J. I., Lee, H., Damsz, B., Prasad, D. T., Pardo, J. M., Hasegawa, P. M., et al. (2000). Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. Plant Journal, 23, 375–383.

    Article  CAS  Google Scholar 

  15. Narasimhan, M. L., Lee, H., Damsz, B., Singh, N. K., Ibeas, J. L., Mat-sumoto, T. K., et al. (2003). Overexpression of a cell wall glycoprotein in Fusarium oxysporum increases virulence and resistance to a plant PR-5 protein. Plant Journal, 36, 390–400.

    Article  CAS  Google Scholar 

  16. Kadowaki, T., & Yamauchi, T. (2005). Adiponectin and adiponectin receptors. Endocrine Reviews, 26, 439–451.

    Article  CAS  Google Scholar 

  17. Narasimhan, M. L., Coca, M. A., Jin, J., Yamauchi, T., Ito, Y., Kadowaki, T., et al. (2005). Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Molecular Cell, 17, 171–180.

    Article  CAS  Google Scholar 

  18. Batalia, M. A., Monzingo, A. F., Ernst, S., & Robertus, J. D. (1996). The crystal structure of the antifungal protein zeamatin, a member of the thaumatin-like, PR-5 protein family. Nature Structural Biology, 3, 19–23.

    Article  CAS  Google Scholar 

  19. Koiwa, H., Kato, H., Nakatsu, T., Oda, J., Yamada, Y., & Sato, F. (1999). Crystal structure of tobacco PR-5d protein at 1.8 Å resolution reveals a conserved acidic cleft structure in antifungal thaumatin-like proteins. Journal of Molecular Biology, 286, 1137–1145.

    Article  CAS  Google Scholar 

  20. Min, K., Ha, S. C., Hasegawa, P. M., Bressan, R. A., Yun, D., & Kim, K. K. (2004). Crystal structure of osmotin, a plant antifungal protein. Proteins: Structure, Function, and Bioinformatics, 54, 170–173.

    Article  CAS  Google Scholar 

  21. Leone, P., Menu-Bouaouiche, L., Peumans, W. J., Payan, F., Barre, A., Roussel, A., et al. (2006). Resolution of the structure of the allergenic and antifungal banana fruit thaumatin like protein at 1.7-A°. Biochimie, 88, 45–52.

    Article  CAS  Google Scholar 

  22. Ghosh, R., & Chakrabarti, C. (2008). Crystal structure analysis of NP24-I: A thaumatin-like protein. Planta, 228, 883–890.

    Article  CAS  Google Scholar 

  23. Trudel, J., Grenier, J., Potvin, C., & Asselin, A. (1998). Several thaumatin-like proteins bind to β-1, 3-glucans. Plant Physiology, 118, 1431–1438.

    Article  CAS  Google Scholar 

  24. Grenier, J., Potvin, C., Trudel, J., & Asselin, A. (1999). Some thaumatin-like proteins hydrolyse polymeric β-1, 3-glucans. Plant Journal, 19, 473–480.

    Article  CAS  Google Scholar 

  25. Osmond, R. I., Hrmova, M., Fontaine, F., Imberty, A., & Fincher, G. B. (2001). Binding interactions between barley thaumatin-like proteins and (1, 3)-β-D-glucans. Kinetics, specificity, structural analysis and biological implications. European Journal of Biochemistry, 268, 4190–4199.

    Article  CAS  Google Scholar 

  26. Menu-Bouaouiche, L., Vriet, C., Peumans, W. J., Barre, A., Van Damme, E. J., & Rougé, P. (2003). A molecular basis for the endo-beta 1, 3-glucanase activity of the thaumatin-like proteins from edible fruits. Biochimie, 85, 123–131.

    Article  CAS  Google Scholar 

  27. Mani, T., & Manjula, S. (2010). Cloning and characterization of two osmotin isoforms from Piper colubrinum. Biologia Plantarum, 54, 377–380.

    Article  CAS  Google Scholar 

  28. Vanaja, T., Neema, V. P., Mammootty, K. P., & Rajeshkumar, R. (2008). Development of a promising interspecific hybrid in black pepper (Piper nigrum L.) for Phytophthora foot rot resistance. Euphytica, 161, 437–445.

    Article  Google Scholar 

  29. Hu, X., & Reddy, A. S. N. (1997). Cloning and expression of a PR5-like protein from Arabidopsis: Inhibition of fungal growth by bacterially expressed protein. Plant Molecular Biology, 349, 49–59.

    Google Scholar 

  30. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 723, 41–74.

    Google Scholar 

  31. Broekaert, W. F., Terras, F. R. G., Cammue, B. P. A., & Vanderleyden, J. (1990). An automated quantitative assay for fungal growth inhibition. FEMS Microbiology Letters, 69, 55–60.

    Article  CAS  Google Scholar 

  32. Salzman, R. A., Koiwa, H., Ibeas, J. I., Pardo, J. M., Hasegawa, P. M., & Bressan, R. A. (2004). Inorganic cations mediate plant PR5 protein antifungal activity through fungal Mnn1-and Mnn4-regulated cell surface glycans. Molecular Plant-Microbe Interactions, 17, 780–788.

    Article  CAS  Google Scholar 

  33. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acid Research, 25, 3389–33402.

    Article  CAS  Google Scholar 

  34. Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234, 779–815.

    Article  CAS  Google Scholar 

  35. Kelley, L. A., Gardner, S. P., & Sutcliffe, M. J. (1996). An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Engineering, 9, 1063–1065.

    Article  CAS  Google Scholar 

  36. Sippl, M. J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins, 17, 355–362.

    Article  CAS  Google Scholar 

  37. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., et al. (1998). Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662.

    Article  CAS  Google Scholar 

  38. Kouwizjer, M. L. C. E., & Grootenhuis, P. D. J. (1995). Parametrization and application of CHEAT95, an extended atom force field for hydrated oligosaccharides. Journal of Physical Chemistry, 99, 13426–13436.

    Article  CAS  Google Scholar 

  39. Aswati Nair, R., Kiran, A. G., Sivakumar, K. C., & Thomas, G. (2010). Molecular characterization of an oomycete-responsive PR-5 protein gene from Zingiber zerumbet. Plant Molecular Biology Reporter, 28, 128–135.

    Article  Google Scholar 

  40. Chan, Y. W., Tung, W. L., Griffith, M., & Chow, K. C. (1999). Cloning of a cDNA encoding the thaumatin-like protein of winter rye (Secale cereale L. Musketeer) and its functional characterisation. Journal of Experimental Botany, 50, 627–1628.

    Google Scholar 

  41. Thevissen, K., Osborn, R. W., Acland, D. P., & Broekaert, W. F. (1997). Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. Journal of Biological Chemistry, 272, 32176–32181.

    Article  CAS  Google Scholar 

  42. Thevissen, K., Osborn, R. W., Acland, D. P., & Broekaert, W. F. (2000). Specific binding sites for an antifungal plant defensin from Dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Molecular Plant-Microbe Interactions, 13, 54–61.

    Article  CAS  Google Scholar 

  43. Veronese, P., Ruiz, M. T., Coca, M. A., Hernandez-Lopez, A., Lee, H., Ibeas, J. I., et al. (2003). In defense against pathogens both plant sentinels and foot soldiers need to know the enemy. Plant Physiology, 131, 1580–1590.

    Article  CAS  Google Scholar 

  44. Hutchins, K., & Bussey, H. (1983). Cell wall receptor for yeast killer toxin: Involvement of (1–6)-β-d-glucan. Journal of Bacteriology, 1549, 161–169.

    Google Scholar 

  45. Bussey, H. (1991). K1 killer toxin, a pore-forming protein from yeast. Molecular Microbiology, 5, 2339–23431.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Dr. N. Anith, Kerala Agricultural University, Vellayani, Trivandrum for the fungal strains. T.M. would like to acknowledge Council for Scientific and Industrial Research, New Delhi, Government of India, for CSIR-Junior Research Fellowship, and MS gratefully acknowledges the Department of Biotechnology, Government of India, for financial support in the form of research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Manjula.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 182 kb)

Supplementary material 2 (TIFF 1330 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mani, T., Sivakumar, K.C. & Manjula, S. Expression and Functional Analysis of Two Osmotin (PR5) Isoforms with Differential Antifungal Activity from Piper colubrinum: Prediction of Structure–Function Relationship by Bioinformatics Approach. Mol Biotechnol 52, 251–261 (2012). https://doi.org/10.1007/s12033-011-9489-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9489-0

Keywords

Navigation