Molecular Biotechnology

, Volume 52, Issue 2, pp 170–179

High Yield of Human Monoclonal Antibody Produced by Stably Transfected Drosophila Schneider 2 Cells in Perfusion Culture Using Wave Bioreactor

  • Lulan Wang
  • Hongxing Hu
  • Jianjun Yang
  • Feng Wang
  • Christian Kaisermayer
  • Paul Zhou


Since it was first introduced in late 1990s Wave bioreactor has been used for protein production by mammalian and insect cell lines. However, using Wave bioreactor to produce human monoclonal antibody by stable Drosophila Schneider 2 (S2) cell transfectants has not been reported before. In this study, S2 cells were co-transfected with an inducible vector expressing human monoclonal antibody heavy and light chains, respectively, specific for hemagglutinin (HA) of H5N1 influenza virus. Stable S2 transfectant clone was selected by limiting dilution assay. Stable S2 transfectant clone that produce the highest amount of human monoclonal antibody was inoculated into two 2-l disposable cellbags, where cell growth and antibody production were compared between batch and perfusion cultures using Wave bioreactor. Here, we report that maximum viable cell density reached 1.06 × 107 cells/ml in batch culture; whereas 1.04 × 108 cells/ml was achieved in perfusion culture. The maximum volumetric antibody productivity in batch culture was 52 mg/l/day; while perfusion culture yielded 1,437 mg/l/day. As a result, the total antibody production was 201 mg in batch culture and 8,212 mg in perfusion culture. The antibody produced by both cultures displays full neutralizing activity. Thus, our results provide strong support for using Wave bioreactor in perfusion culture for a large-scale production of human monoclonal antibody by stable S2 cell transfectants.


Human monoclonal antibody Drosophila S2 cells Wave bioreactor Perfusion Influenza virus 

Supplementary material

12033_2011_9484_MOESM1_ESM.doc (81 kb)
Supplementary material 1 (DOC 81 kb)


  1. 1.
    Altamirano, C., Paredes, C., Illanes, A., Cairo, J. J., & Godia, F. (2004). Strategies for fed-batch cultivation of t-PA producing CHO cells: Substitution of glucose and glutamine and rational design of culture medium. Journal of Biotechnology, 1102, 171–179.CrossRefGoogle Scholar
  2. 2.
    Backovic, M., Johansson, D. X., Klupp, B. G., Mettenleiter, T. C., Persson, M. A., & Rey, F. A. (2010). Efficient method for production of high yields of Fab fragments in Drosophila S2 cells. Protein Engineering, Design Selection, 234, 169–174.CrossRefGoogle Scholar
  3. 3.
    Becker, E., Florin, L., Pfizenmaier, K., & Kaufmann, H. (2010). Evaluation of a combinatorial cell engineering approach to overcome apoptotic effects in XBP-1(s) expressing cells. Journal of Biotechnology, 1464, 198–206.CrossRefGoogle Scholar
  4. 4.
    Bibila, T. A., & Robinson, D. K. (1995). In pursuit of the optimal fed-batch process for monoclonal antibody production. Biotechnology Progress, 111, 1–13.CrossRefGoogle Scholar
  5. 5.
    Birch, J. R., & Racher, A. J. (2006). Antibody production. Advanced Drug Delivery Reviews, 585–6, 671–685.CrossRefGoogle Scholar
  6. 6.
    Brecht, R. (2010). Disposable bioreactors: Maturation into pharmaceutical glycoprotein manufacturing. Advances in Biochemical Engineering/Biotechnology, 115, 1–31.CrossRefGoogle Scholar
  7. 7.
    Butler, M. (2005). Animal cell cultures: Recent achievements and perspectives in the production of biopharmaceuticals. Applied Microbiology and Biotechnology, 683, 283–291.CrossRefGoogle Scholar
  8. 8.
    Chadd, H. E., & Chamow, S. M. (2001). Therapeutic antibody expression technology. Current Opinion in Biotechnology, 122, 188–194.CrossRefGoogle Scholar
  9. 9.
    Choi, B. K., Bobrowicz, P., Davidson, R. C., Hamilton, S. R., Kung, D. H., Li, H., et al. (2003). Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proceedings of the National Academy of Sciences of the United States of America, 1009, 5022–5027.CrossRefGoogle Scholar
  10. 10.
    Chusainow, J., Yang, Y. S., Yeo, J. H., Toh, P. C., Asvadi, P., Wong, N. S., et al. (2009). A study of monoclonal antibody-producing CHO cell lines: What makes a stable high producer? Biotechnology and Bioengineering, 1024, 1182–1196.CrossRefGoogle Scholar
  11. 11.
    Damasceno, L. M., Anderson, K. A., Ritter, G., Cregg, J. M., Old, L. J., & Batt, C. A. (2007). Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris. Applied Microbiology and Biotechnology, 742, 381–389.CrossRefGoogle Scholar
  12. 12.
    Damasceno, L. M., Pla, I., Chang, H. J., Cohen, L., Ritter, G., Old, L. J., et al. (2004). An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris. Protein Expression and Purification, 371, 18–26.CrossRefGoogle Scholar
  13. 13.
    Dowd, J. E., Weber, I., Rodriguez, B., Piret, J. M., & Kwok, K. E. (1999). Predictive control of hollow-fiber bioreactors for the production of monoclonal antibodies. Biotechnology and Bioengineering, 634, 484–492.CrossRefGoogle Scholar
  14. 14.
    Eibl, R., & Eibl, D. (2009). Application of disposable bag-bioreactors in tissue engineering and for the production of therapeutic agents. Advances in Biochemical Engineering/Biotechnology, 112, 183–207.CrossRefGoogle Scholar
  15. 15.
    Eibl, R., Kaiser, S., Lombriser, R., & Eibl, D. (2010). Disposable bioreactors: The current state-of-the-art and recommended applications in biotechnology. Applied Microbiology and Biotechnology, 861, 41–49.CrossRefGoogle Scholar
  16. 16.
    Gasser, B., & Mattanovich, D. (2007). Antibody production with yeasts and filamentous fungi: On the road to large scale? Biotechnological Letters, 292, 201–212.CrossRefGoogle Scholar
  17. 17.
    Gupta, S., Eastman, J., Silski, C., Ferkol, T., & Davis, P. B. (2001). Single chain Fv: A ligand in receptor-mediated gene delivery. Gene Therapy, 88, 586–592.CrossRefGoogle Scholar
  18. 18.
    Hanson, M. A., Brorson, K. A., Moreira, A. R., & Rao, G. (2009). Comparisons of optically monitored small-scale stirred tank vessels to optically controlled disposable bag bioreactors. Microbial Cell Factories, 8, 44.CrossRefGoogle Scholar
  19. 19.
    Hu, W. S., Meier, J., & Wang, D. I. (1986). Use of surface aerator improve oxygen transfer in cell culture. Biotechnology and Bioengineering, 281, 122–125.CrossRefGoogle Scholar
  20. 20.
    Johansson, D. X., Drakenberg, K., Hopmann, K. H., Schmidt, A., Yari, F., Hinkula, J., et al. (2007). Efficient expression of recombinant human monoclonal antibodies in Drosophila S2 cells. Journal of Immunological Methods, 3181–2, 37–46.CrossRefGoogle Scholar
  21. 21.
    Kim, Y. K., Shin, H. S., Tomiya, N., Lee, Y. C., Betenbaugh, M. J., & Cha, H. J. (2005). Production and N-glycan analysis of secreted human erythropoietin glycoprotein in stably transfected Drosophila S2 cells. Biotechnology and Bioengineering, 924, 452–461.CrossRefGoogle Scholar
  22. 22.
    Kirkpatrick, R. B., Ganguly, S., Angelichio, M., Griego, S., Shatzman, A., Silverman, C., et al. (1995). Heavy chain dimers as well as complete antibodies are efficiently formed and secreted from Drosophila via a BiP-mediated pathway. Journal of Biological Chemistry, 27034, 19800–19805.Google Scholar
  23. 23.
    Li, H., Sethuraman, N., Stadheim, T. A., Zha, D., Prinz, B., Ballew, N., et al. (2006). Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nature Biotechnology, 242, 210–215.CrossRefGoogle Scholar
  24. 24.
    Li, B., Tsing, S., Kosaka, A. H., Nguyen, B., Osen, E. G., Bach, C., et al. (1996). Expression of human dopamine beta-hydroxylase in Drosophila Schneider 2 cells. Biochemical Journal, 313(Pt 1), 57–64.Google Scholar
  25. 25.
    Lim, H. J., Kim, Y. K., Hwang, D. S., & Cha, H. J. (2004). Expression of functional human transferrin in stably transfected Drosophila S2 cells. Biotechnology Progress, 204, 1192–1197.CrossRefGoogle Scholar
  26. 26.
    Palmberger, D., Rendic, D., Tauber, P., Krammer, F., Wilson, I. B., & Grabherr, R. (2011). Insect cells for antibody production: Evaluation of an efficient alternative. Journal of Biotechnology, 1533–4, 160–166.CrossRefGoogle Scholar
  27. 27.
    Potgieter, T. I., Cukan, M., Drummond, J. E., Houston-Cummings, N. R., Jiang, Y., Li, F., et al. (2009). Production of monoclonal antibodies by glycoengineered Pichia pastoris. Journal of Biotechnology, 1394, 318–325.CrossRefGoogle Scholar
  28. 28.
    Potgieter, T. I., Kersey, S. D., Mallem, M. R., Nylen, A. C., & d’Anjou, M. (2010). Antibody expression kinetics in glycoengineered Pichia pastoris. Biotechnology and Bioengineering, 1066, 918–927.CrossRefGoogle Scholar
  29. 29.
    Reavy, B., Ziegler, A., Diplexcito, J., Macintosh, S. M., Torrance, L., & Mayo, M. (2000). Expression of functional recombinant antibody molecules in insect cell expression systems. Protein Expression and Purification, 182, 221–228.CrossRefGoogle Scholar
  30. 30.
    Reichert, J. M., Rosensweig, C. J., Faden, L. B., & Dewitz, M. C. (2005). Monoclonal antibody successes in the clinic. Nature Biotechnology, 239, 1073–1078.CrossRefGoogle Scholar
  31. 31.
    Samuelsson, A., Yari, F., Hinkula, J., Ersoy, O., Norrby, E., & Persson, M. A. (1996). Human antibodies from phage libraries: Neutralizing activity against human immunodeficiency virus type 1 equally improved after expression as Fab and IgG in mammalian cells. European Journal of Immunology, 2612, 3029–3034.CrossRefGoogle Scholar
  32. 32.
    Sauer, P. W., Burky, J. E., Wesson, M. C., Sternard, H. D., & Qu, L. (2000). A high-yielding, generic fed-batch cell culture process for production of recombinant antibodies. Biotechnology and Bioengineering, 675, 585–597.CrossRefGoogle Scholar
  33. 33.
    Schoonooghe, S., Kaigorodov, V., Zawisza, M., Dumolyn, C., Haustraete, J., Grooten, J., et al. (2009). Efficient production of human bivalent and trivalent anti-MUC1 Fab-scFv antibodies in Pichia pastoris. BMC Biotechnology, 9, 70.CrossRefGoogle Scholar
  34. 34.
    Simmons, L. C., Reilly, D., Klimowski, L., Shantha Raju, T., Meng, G., Sims, P., et al. (2002). Expression of full-length immunoglobulins in Escherichia coli: Rapid and efficient production of aglycosylated antibodies. Journal of Immunological Methods, 2631–2, 133–147.CrossRefGoogle Scholar
  35. 35.
    Singh, V. (1999). Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology, 301–3, 149–158.CrossRefGoogle Scholar
  36. 36.
    Tang, Y. J., Ohashi, R., & Hamel, J. F. (2007). Perfusion culture of hybridoma cells for hyperproduction of IgG(2a) monoclonal antibody in a wave bioreactor-perfusion culture system. Biotechnology Progress, 231, 255–264.CrossRefGoogle Scholar
  37. 37.
    Trebak, M., Chong, J. M., Herlyn, D., & Speicher, D. W. (1999). Efficient laboratory-scale production of monoclonal antibodies using membrane-based high-density cell culture technology. Journal of Immunological Methods, 2301–2, 59–70.CrossRefGoogle Scholar
  38. 38.
    Tsai, C., Caillet, C., Hu, H., Zhou, F., Ding, H., Zhang, G., et al. (2009). Measurement of neutralizing antibody responses against H5N1 clades in immunized mice and ferrets using pseudotypes expressing influenza hemagglutinin and neuraminidase. Vaccine, 2748, 6777–6790.CrossRefGoogle Scholar
  39. 39.
    Walsh, G. (2010). Biopharmaceutical benchmarks 2010. Nature Biotechnology, 289, 917–924.CrossRefGoogle Scholar
  40. 40.
    Weber, W., Weber, E., Geisse, S., & Memmert, K. (2002). Optimisation of protein expression and establishment of the Wave Bioreactor for Baculovirus/insect cell culture. Cytotechnology, 381–3, 77–85.CrossRefGoogle Scholar
  41. 41.
    Wurm, F. M. (2004). Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology, 2211, 1393–1398.CrossRefGoogle Scholar
  42. 42.
    Zhang, X., Stettler, M., De Sanctis, D., Perrone, M., Parolini, N., Discacciati, M., et al. (2010). Use of orbital shaken disposable bioreactors for Mammalian cell cultures from the milliliter-scale to the 1,000-liter scale. Advances in Biochemical Engineering/Biotechnology, 115, 33–53.CrossRefGoogle Scholar
  43. 43.
    Zhou, B., Zhong, N., & Guan, Y. (2007). Treatment with convalescent plasma for influenza A (H5N1) infection. New England Journal of Medicine, 35714, 1450–1451.CrossRefGoogle Scholar
  44. 44.
    Zuberbuhler, K., Palumbo, A., Bacci, C., Giovannoni, L., Sommavilla, R., Kaspar, M., et al. (2009). A general method for the selection of high-level scFv and IgG antibody expression by stably transfected mammalian cells. Protein Engineering, Design Selection, 223, 169–174.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lulan Wang
    • 1
  • Hongxing Hu
    • 1
  • Jianjun Yang
    • 2
  • Feng Wang
    • 1
  • Christian Kaisermayer
    • 3
  • Paul Zhou
    • 1
  1. 1.Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
  2. 2.Fast Trak CenterGE (China) Research and Development Center Co., Ltd.ShanghaiChina
  3. 3.Fast Trak CenterGE Healthcare (Europe) Institute of Applied MicrobiologyWienAustria

Personalised recommendations