Molecular Biotechnology

, Volume 51, Issue 3, pp 272–282 | Cite as

Cross Validation of Liquid Chromatography–Mass Spectrometry and Lectin Array for Monitoring Glycosylation in Fed-Batch Glycoprotein Production

  • Catherine A. HayesEmail author
  • Roisin Doohan
  • David Kirkley
  • Kirk Leister
  • Brendan Harhen
  • Angela V. Savage
  • Niclas G. Karlsson


Glycosylation analysis of recombinant glycoproteins is of importance for the biopharmaceutical industry and the production of glycoprotein pharmaceuticals. A commercially available lectin array technology was evaluated for its ability to present a reproducible fingerprint of a recombinant CTLY4-IgG fusion glycoprotein expressed in large scale CHO-cell fermentation. The glycosylation prediction from the array was compared to traditional negative mode capillary LC–MS of released oligosaccharides. It was shown that both methods provide data that allow samples to be distinguished by their glycosylation pattern. This included information about sialylation, the presence of reducing terminal galactose β1-, terminal N-acetylglucosamine β1-, and antennary distribution. With both methods it was found that a general trend of increased sialylation was associated with an increase of the antenna and reduced amount of terminal galactose β1-, while N-acetylglucosamine β1- was less affected. LC–MS, but not the lectin array, provided valuable information about the sialic acid isoforms present, including N-acetylneuraminic acid, N-glycolylneuraminic acid and their O-acetylated versions. Detected small amounts of high-mannose structures by LC–MS correlated with the detection of the same epitope by the lectin array.


Glycosylation High mannose Acetylation N-linked oligosaccharides Lectin array Mass spectrometry 



Chinese hamster ovary


Liquid chromatography




N-Acetyl glucosamine






N-Acetylneuraminic acid or sialic acid


Mass spectrometry


N-Glycolylneuraminic acid





This research was supported by the Industrial Development Authority, Ireland.

Supplementary material

12033_2011_9465_MOESM1_ESM.xlsx (53 kb)
Supplementary material 1 (XLSX 52 kb)


  1. 1.
    Ashline, D. J., Lapadula, A. J., Liu, Y. H., Lin, M., Grace, M., Pramanik, B., et al. (2007). Carbohydrate structural isomers analyzed by sequential mass spectrometry. Analytical Chemistry, 79, 3830–3842.CrossRefGoogle Scholar
  2. 2.
    Jang-Lee, J., North, S. J., Sutton-Smith, M., Goldberg, D., Panico, M., Morris, H., et al. (2006). Glycomic profiling of cells and tissues by mass spectrometry: fingerprinting and sequencing methodologies. Methods in Enzymology, 415, 59–86.CrossRefGoogle Scholar
  3. 3.
    Karlsson, N. G., Wilson, N. L., Wirth, H. J., Dawes, P., Joshi, H., & Packer, N. H. (2004). Negative ion graphitised carbon nano-liquid chromatography/mass spectrometry increases sensitivity for glycoprotein oligosaccharide analysis. Rapid Communications in Mass Spectrometry, 18, 2282–2292.CrossRefGoogle Scholar
  4. 4.
    Zaia, J. (2008). Mass spectrometry and the emerging field of glycomics. Chemistry & Biology, 15, 881–892.CrossRefGoogle Scholar
  5. 5.
    Royle, L., Campbell, M. P., Radcliffe, C. M., White, D. M., Harvey, D. J., Abrahams, J. L., et al. (2008). HPLC-based analysis of serum n-glycans on a 96-well plate platform with dedicated database software. Analytical Biochemistry, 376, 1–12.CrossRefGoogle Scholar
  6. 6.
    Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y., & Tomiya, N. (1995). Three-dimensional elution mapping of pyridylaminated n-linked neutral and sialyl oligosaccharides. Analytical Biochemistry, 226, 139–146.CrossRefGoogle Scholar
  7. 7.
    Vanderschaeghe, D., Festjens, N., Delanghe, J., & Callewaert, N. (2010). Glycome profiling using modern glycomics technology: technical aspects and applications. Journal of Biological Chemistry, 391, 149–161.CrossRefGoogle Scholar
  8. 8.
    Patwa, T., Li, C., Simeone, D. M., & Lubman, D. M. (2010). Glycoprotein analysis using protein microarrays and mass spectrometry. Mass Spectrometry Reviews, 29, 830–844.CrossRefGoogle Scholar
  9. 9.
    Hirabayashi, J., Kuno, A., & Tateno, H. (2011). Lectin-based structural glycomics: a practical approach to complex glycans. Electrophoresis, 32, 1118–1128.CrossRefGoogle Scholar
  10. 10.
    Pilobello, K. T., Krishnamoorthy, L., Slawek, D., & Mahal, L. K. (2005). Development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem, 6, 985–989.CrossRefGoogle Scholar
  11. 11.
    Rosenfeld, R., Bangio, H., Gerwig, G. J., Rosenberg, R., Aloni, R., Cohen, Y., et al. (2007). A lectin array-based methodology for the analysis of protein glycosylation. Journal of Biochemical and Biophysical Methods, 70, 415–426.CrossRefGoogle Scholar
  12. 12.
    Hirabayashi, J. (2008). Concept strategy and realization of lectin-based glycan profiling. Journal of Biochemistry, 144, 139–147.CrossRefGoogle Scholar
  13. 13.
    Toyoda, M., Yamazaki-Inoue, M., Itakura, Y., Kuno, A., Ogawa, T., Yamada, M., et al. (2011). Lectin microarray analysis of pluripotent and multipotent stem cells. Genes Cells, 16, 1–11.CrossRefGoogle Scholar
  14. 14.
    Kuno, A., Kato, Y., Matsuda, A., Kaneko, M. K., Ito, H., Amano, K., et al. (2009). Focused differential glycan analysis with the platform antibody-assisted lectin profiling for glycan-related biomarker verification. Molecular & Cellular Proteomics, 8, 99–108.CrossRefGoogle Scholar
  15. 15.
    Gupta, G., Surolia, A., & Sampathkumar, S. G. (2010). Lectin microarrays for glycomic analysis. OMICS, 14, 419–436.CrossRefGoogle Scholar
  16. 16.
    Pilobello, K. T., Slawek, D. E., & Mahal, L. K. (2007). A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc. Natl. Acad. Sci. U.S.A., 104, 11534–11539.CrossRefGoogle Scholar
  17. 17.
    Kuno, A., Uchiyama, N., Koseki-Kuno, S., Ebe, Y., Takashima, S., Yamada, M., et al. (2005). Evanescent-field fluorescence-assisted lectin microarray: A new strategy for glycan profiling. Nature Methods, 2, 851–856.CrossRefGoogle Scholar
  18. 18.
    Rosenfeld, R., Rosenberg, R., Olender, R., Plaschkes, I., Dabush, D., Himmelfarb, C., et al. (2007). High-throughput glycoanalysis for use in biopharmaceuticals development and manufacturing in bioseparation and bioprocessing, vol 2. In G. Subramanian (Ed.), Bioseparation and bioprocessing (pp. 663–673). Germany: Wiley-VCH Verlag GmbH & Co.Google Scholar
  19. 19.
    Sutcliffe, A., & Smith, V. (2006). Glycosylation patterns during fermentation. Genetic Engineer & Biotechnology News, 26(8), 45–47.Google Scholar
  20. 20.
    Dimitrov, D. S., & Marks, J. D. (2009). Therapeutic antibodies: Current state and future trends–is a paradigm change coming soon? Methods in Molecular Biology, 525, 1–27. xiii.CrossRefGoogle Scholar
  21. 21.
    Walsh, G., & Jefferis, R. (2006). Post-translational modifications in the context of therapeutic proteins. Nature Biotechnology, 24, 1241–1252.CrossRefGoogle Scholar
  22. 22.
    Estrella, R. P., Whitelock, J. M., Packer, N. H., & Karlsson, N. G. (2007). Graphitized carbon LC–MS characterization of the chondroitin sulfate oligosaccharides of aggrecan. Analytical Chemistry, 79, 3597–3606.CrossRefGoogle Scholar
  23. 23.
    Maya, R. B., Amor, Y., Rosenberg, R., Byk-Tennenbaum, T., Samokovlisky, A., Olender, R., et al. (2007). Glycoanalysis on a lectin array: applications to the development of biopharmaceuticals and life science research in glycobiology. In C. Sansom & T. Markman (Eds.), Glycobiology (pp. 340–351). UK: Scion.Google Scholar
  24. 24.
    Wada, Y., Azadi, P., Costello, C. E., Dell, A., Dwek, R. A., Geyer, H., et al. (2007). Comparison of the methods for profiling glycoprotein glycans–hupo human disease glycomics/proteome initiative multi-institutional study. Glycobiology, 17, 411–422.CrossRefGoogle Scholar
  25. 25.
    Galili, U. (1989). Abnormal expression of alpha-galactosyl epitopes in man. A trigger for autoimmune processes? Lancet, 2, 358–361.CrossRefGoogle Scholar
  26. 26.
    Chenu, S., Gregoire, A., Malykh, Y., Visvikis, A., Monaco, L., Shaw, L., et al. (2003). Reduction of cmp-n-acetylneuraminic acid hydroxylase activity in engineered chinese hamster ovary cells using an antisense-rna strategy. Biochimica et Biophysica Acta, 1622, 133–144.CrossRefGoogle Scholar
  27. 27.
    Shi, W. X., Chammas, R., & Varki, A. (1998). Induction of sialic acid 9-o-acetylation by diverse gene products: implications for the expression cloning of sialic acid o-acetyltransferases. Glycobiology, 8, 199–205.CrossRefGoogle Scholar
  28. 28.
    Hossler, P., Khattak, S. F., & Li, Z. J. (2009). Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology, 19, 936–949.CrossRefGoogle Scholar
  29. 29.
    Andersen, D. C., & Goochee, C. F. (1995). The effect of ammonia on the o-linked glycosylation of granulocyte colony-stimulating factor produced by chinese hamster ovary cells. Biotechnology and Bioengineering, 47, 96–105.CrossRefGoogle Scholar
  30. 30.
    Yang, M., & Butler, M. (2000). Effects of ammonia on cho cell growth, erythropoietin production and glycosylation. Biotechnology and Bioengineering, 68, 370–380.CrossRefGoogle Scholar
  31. 31.
    Schaffner, G., Haase, M., & Giess, S. (1995). Criteria for investigation of the product equivalence of monoclonal antibodies for therapeutic and in vivo-diagnostic use in case of introduction of changes in the manufacturing process. Biologicals, 23, 253–259.CrossRefGoogle Scholar
  32. 32.
    Balaguer, E., & Neususs, C. (2006). Glycoprotein characterization combining intact protein and glycan analysis by capillary electrophoresis-electrospray ionization-mass spectrometry. Analytical Chemistry, 78, 5384–5393.CrossRefGoogle Scholar
  33. 33.
    Axelsson, M. A., Karlsson, N. G., Steel, D. M., Ouwendijk, J., Nilsson, T., & Hansson, G. C. (2001). Neutralization of ph in the golgi apparatus causes redistribution of glycosyltransferases and changes in the o-glycosylation of mucins. Glycobiology, 11, 633–644.CrossRefGoogle Scholar
  34. 34.
    Chuan, K. H., Lim, S. F., Martin, L., Yun, C. Y., Loh, S. O., Lasne, F., et al. (2006). Caspase activation sialidase release and changes in sialylation pattern of recombinant human erythropoietin produced by CHO cells in batch and fed-batch cultures. Cytotechnology, 51, 67–79.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Catherine A. Hayes
    • 1
    • 3
    Email author
  • Roisin Doohan
    • 1
  • David Kirkley
    • 2
  • Kirk Leister
    • 2
  • Brendan Harhen
    • 1
  • Angela V. Savage
    • 1
  • Niclas G. Karlsson
    • 1
    • 3
  1. 1.School of ChemistryNational University IrelandGalwayIreland
  2. 2.Bristol-Myers SquibbSyracuseUSA
  3. 3.Department of Medical BiochemistryUniversity of GothenburgGothenburgSweden

Personalised recommendations