Advertisement

Molecular Biotechnology

, Volume 51, Issue 3, pp 247–253 | Cite as

A Rapid and Efficient Method for Isolating High Quality DNA from Leaves of Carnivorous Plants from the Drosera Genus

  • Flore Biteau
  • Estelle Nisse
  • Alain Hehn
  • Sissi Miguel
  • Paul Hannewald
  • Frédéric Bourgaud
Research

Abstract

Drosera rotundifolia, Drosera capensis, and Drosera regia are carnivorous plants of the sundew family, characterized by the presence of stalked and sticky glands on the upper leaf surface, to attract, trap, and digest insects. These plants contain exceptionally high amounts of polysaccharides, polyphenols, and other secondary metabolites that interfere with DNA isolation and subsequent enzymatic reactions such as PCR amplification. We present here a protocol for quick isolation of Drosera DNA with high yield and a high level of purity, by combining a borate extraction buffer with a commercial DNA extraction kit, and a proteinase K treatment during extraction. The yield of genomic DNA is from 13.36 μg/g of fresh weight to 35.29 μg/g depending of the species of Drosera, with a A 260/A 280 ratio of 1.43–1.92. Moreover, the procedure is quick and can be completed in 2.5 h.

Keywords

Drosera rotundifolia Drosera regia Drosera capensis DNA isolation Hot borate Polyphenols Polysaccharides 

Abbreviations

EGTA

Ethylene glycol bis(beta-aminoethylether)-NN′-tetraacetic acid

SDS

Sodium dodecyl sulfate

PVP

Polyvinylpyrrolidone

DTT

Dithiothreitol

Notes

Acknowledgments

This study was a part of the Bioprolor project financed by Conseil Regional de Lorraine.

References

  1. 1.
    McPherson, S. (2010). Carnivorous Plants and their Habitats (Vol. Volume 2). London: Redfern Natural History Productions.Google Scholar
  2. 2.
    Juniper, B. E., Robins, R. J., & Joel, D. M. (1989). The Carnivorous Plants. San Diego: Academic Press.Google Scholar
  3. 3.
    Marczak, L., Kawiak, A., Ojkowska, E., & Stobiecki, M. (2005). Secondary metabolites in in vitro cultured plants of the genus Drosera. Phytochemical Analysis, 16(3), 143–149.CrossRefGoogle Scholar
  4. 4.
    Budzianowski, J. (2000). Naphthoquinone glucosides of Drosera gigantea from in vitro cultures. Planta Medica, 66(7), 667–669.CrossRefGoogle Scholar
  5. 5.
    Krolicka, A., Szpitter, A., Stawujak, K., Baranski, R., Gwizdek-Wisniewska, A., Skrzypczak, A., et al. (2010). Teratomas of Drosera capensis var. alba as a source of naphthoquinone: Ramentaceone. Plant Cell Tissue and Organ Culture, 103(3), 285–292.CrossRefGoogle Scholar
  6. 6.
    Hook, I. L. I. (2001). Naphthoquinone contents of in vitro cultured plants and cell suspensions of Dionaea muscipula and Drosera species. Plant Cell Tissue and Organ Culture, 67(3), 281–285.CrossRefGoogle Scholar
  7. 7.
    Tokunaga, T., Takada, N., & Ueda, M. (2004). Mechanism of antifeedant activity of plumbagin, a compound concerning the chemical defense in carnivorous plant. Tetrahedron Letters, 45(38), 7115–7119.CrossRefGoogle Scholar
  8. 8.
    Putalun, W., Udomsin, O., Yusakul, G., Juengwatanatrakul, T., Sakamoto, S., & Tanaka, H. (2010). Enhanced plumbagin production from in vitro cultures of Drosera burmanii using elicitation. Biotechnology Letters, 32(5), 721–724.CrossRefGoogle Scholar
  9. 9.
    Paper, D. H., Karall, E., Kremser, M., & Krenn, L. (2005). Comparison of the antiinflammatory effects of Drosera rotundifolia and Drosera madagascariensis in the HET-CAM assay. Phytother Res, 19(4), 323–326.CrossRefGoogle Scholar
  10. 10.
    Ferreira, D. T., Andrei, C. C., Saridakis, H. O., Tde, J. F., Vinhato, E., Carvalho, K. E., et al. (2004). Antimicrobial activity and chemical investigation of Brazilian Drosera. Memórias do Instituto Oswaldo Cruz, 99(7), 753–755.CrossRefGoogle Scholar
  11. 11.
    Krenn, L., Beyer, G., Pertz, H. H., Karall, E., Kremser, M., Galambosi, B., et al. (2004). In vitro antispasmodic and anti-inflammatory effects of Drosera rotundifolia. Arzneimittelforschung, 54(7), 402–405.Google Scholar
  12. 12.
    Melzig, M. F., Pertz, H. H., & Krenn, L. (2001). Anti-inflammatory and spasmolytic activity of extracts from Drosera herba. Phytomedicine, 8(3), 225–229.CrossRefGoogle Scholar
  13. 13.
    Didry, N., Dubreuil, L., Trotin, F., & Pinkas, M. (1998). Antimicrobial activity of aerial parts of Drosera peltata Smith on oral bacteria. Journal of Ethnopharmacology, 60(1), 91–96.CrossRefGoogle Scholar
  14. 14.
    Krolicka, A., Szpitter, A., Maciag, M., Biskup, E., Gilgenast, E., Romanik, G., et al. (2009). Antibacterial and antioxidant activity of the secondary metabolites from in vitro cultures of Drosera aliciae. Biotechnology and Applied Biochemistry, 53(3), 175–184.Google Scholar
  15. 15.
    Biteau, F., Bourgaud, F., Gontier, E. & Fèvre, J.-P. (2008). Process for the production of recombinant proteins using carnivorous plants. WO/2008/040599A1. Nancy: Plant Advanced Technologies.Google Scholar
  16. 16.
    Gowda, D. C., Reuter, G., & Schauer, R. (1983). Structural studies of an acidic polysaccharide from the mucin secreted by Drosera capensis. Carbohydrate Research, 113(1), 113–124.CrossRefGoogle Scholar
  17. 17.
    Erni, P., Varagnat, M. & McKinley, G.H. (2008). Little shop of horrors: Rheology of the mucilage of Drosera sp., a carnivorous plant. AIP Conference Proceedings Series, 1027(1), 579–581.Google Scholar
  18. 18.
    Varma, A., Padh, H., & Shrivastava, N. (2007). Plant genomic DNA isolation: An art or a science. Biotechnology Journal, 2(3), 386–392.CrossRefGoogle Scholar
  19. 19.
    Bekesiova, I., Nap, J. P., & Mlynarova, P. (1999). Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Molecular Biology Reporter, 17, 269–277.CrossRefGoogle Scholar
  20. 20.
    Pirttilä, A.M., Hirsikorpi, M., Kämäräinen, T., Jaakola, L. & Hohtola, A. (2001). DNA isolation methods for medicinal and aromatic plants. Plant Molecular Biology Reporter, 19, 273a–f.Google Scholar
  21. 21.
    Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497.CrossRefGoogle Scholar
  22. 22.
    Wan, C. Y., & Wilkins, T. A. (1994). A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Analytical Biochemistry, 223(1), 7–12.CrossRefGoogle Scholar
  23. 23.
    Hall, T. C., Ma, Y., Buchbinder, B. U., Pyne, J. W., Sun, S. M., & Bliss, F. A. (1978). Messenger RNA for G1 protein of French bean seeds: Cell-free translation and product characterization. Proceedings of the National Academy of Sciences of the United States of America, 75(7), 3196–3200.CrossRefGoogle Scholar
  24. 24.
    Kumar, G. R. K., Eswaran, N., & Johnson, T. S. (2011). Isolation of high-quality RNA from various tissues of Jatropha curcas for downstream applications. Analytical Biochemistry, 413(4), 63–65.CrossRefGoogle Scholar
  25. 25.
    Samanta, P., Sadhukhan, S., Das, S., Joshi, A., Sen, S.K. & Basu, A. (2011). Isolation of RNA from field-grown jute (Corchorus capsularis) Plant in different developmental stages for effective downstream molecular analysis. Molecular Biotechnology, 49(2),109–115Google Scholar
  26. 26.
    Wang, X., Tian, W., & Li, Y. (2008). Development of an efficient protocol of RNA isolation from recalcitrant tree tissues. Molecular Biotechnology, 38(1), 57–64.CrossRefGoogle Scholar
  27. 27.
    Moser, C., Gatto, P., Moser, M., Pindo, M., & Velasco, R. (2004). Isolation of functional RNA from small amounts of different grape and apple tissues. Molecular Biotechnology, 26(2), 95–99.CrossRefGoogle Scholar
  28. 28.
    Goldenberger, D., Perschil, I., Ritzler, M., & Altwegg, M. (1995). A simple “universal” DNA extraction procedure using SDS and proteinase K is compatible with direct PCR amplification. Genome Research, 4(6), 368–370.CrossRefGoogle Scholar
  29. 29.
    Hirsikorpi, M., Kamarainen, T., Teeri, T., & Hohtola, A. (2002). Agrobacterium-mediated transformation of round leaved sundew (Drosera rotundifolia L.). Plant Science, 162(4), 537–542.CrossRefGoogle Scholar
  30. 30.
    Dehestani, A., & Tabar, S. K. K. (2007). A rapid efficient method for DNA isolation from plants with high levels of secondary metabolites. Asian Journal of Plant Sciences, 6(6), 977–981.CrossRefGoogle Scholar
  31. 31.
    Echevarria-Machado, I., Sanchez-Cach, L. A., Hernandez-Zepeda, C., Rivera-Madrid, R., & Moreno-Valenzuela, O. A. (2005). A simple and efficient method for isolation of DNA in high mucilaginous plant tissues. Molecular Biotechnology, 31(2), 129–135.CrossRefGoogle Scholar
  32. 32.
    Moyo, M., Amoo, S. O., Bairu, M. W., Finnie, J. F., & Van Staden, J. (2008). Optimising DNA isolation for medicinal plants. South African Journal of Botany, 74(4), 771–775.CrossRefGoogle Scholar
  33. 33.
    Cheng, Y. J., Guo, W. W., Hua-Lin, Y., Pang, X. M., & Deng, X. (2003). An efficient protocol for genomic DNA extraction from citrus species. Plant Molecular Biology Reporter, 21(2), 177a–177g.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Flore Biteau
    • 1
  • Estelle Nisse
    • 2
  • Alain Hehn
    • 1
  • Sissi Miguel
    • 2
  • Paul Hannewald
    • 2
  • Frédéric Bourgaud
    • 1
  1. 1.UMR 1121 Nancy-Université (INPL)—INRA Agronomie et Environnement Nancy-ColmarVandœuvre-lès-NancyFrance
  2. 2.Plant Advanced Technologies SAVandœuvre-lès-NancyFrance

Personalised recommendations