Molecular Biotechnology

, Volume 51, Issue 3, pp 221–232

Complexes of Streptavidin-Fused Antigens with Biotinylated Antibodies Targeting Receptors on Dendritic Cell Surface: A Novel Tool for Induction of Specific T-Cell Immune Responses

  • Ondrej Stanek
  • Irena Linhartova
  • Laleh Majlessi
  • Claude Leclerc
  • Peter Sebo


The choice of tools that enable efficient targeting of exogenous antigens (Ag) for processing and presentation by professional Ag-presenting cells (APC) remains limited. This represents, indeed, a bottleneck in development of vaccines inducing specific T-cell responses. Here, we describe a novel strategy of Ag delivery into APCs. The Ag of choice is fused to the N- or C-terminus of streptavidin (SA) and tetrameric Ag–SA or SA–Ag fusion proteins are produced in E. coli and purified by 2-Iminobiotin-Agarose affinity chromatography. Alternatively, Ag–SA proteins are purified from urea extracts of E. coli inclusion bodies and refolded in vitro into functional tetramers. Complexes with biotinylated antibodies targeting cell surface receptors are formed and used to deliver the Ags of choice for processing and presentation by APCs and induction of Ag-specific CD4+ and CD8+ T-cell responses in vitro and in vivo.


Streptavidin Antigen delivery Biotinylated antibody T-cell response Dendritic cell Receptor targeting 


  1. 1.
    Moron, G., Dadaglio, G., & Leclerc, C. (2004). New tools for antigen delivery to the MHC class I pathway. Trends in Immunology, 25, 92–97.CrossRefGoogle Scholar
  2. 2.
    Garmory, H. S., Brown, K. A., & Titball, R. W. (2003). DNA vaccines: improving expression of antigens. Genetic Vaccines Therapy, 1, 2.CrossRefGoogle Scholar
  3. 3.
    Mollenkopf, H., Dietrich, G., & Kaufmann, S. H. (2001). Intracellular bacteria as targets and carriers for vaccination. The Journal of Biological Chemistry, 382, 521–532.CrossRefGoogle Scholar
  4. 4.
    Patel, G. B., Zhou, H., Ponce, A., & Chen, W. (2007). Mucosal and systemic immune responses by intranasal immunization using archaeal lipid-adjuvanted vaccines. Vaccine, 25, 8622–8636.CrossRefGoogle Scholar
  5. 5.
    Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery, 4, 145–160.CrossRefGoogle Scholar
  6. 6.
    Kim, S. G., Park, M. Y., Kim, C. H., Sohn, H. J., Kim, H. S., Park, J. S., et al. (2008). Modification of CEA with both CRT and TAT PTD induces potent anti-tumor immune responses in RNA-pulsed DC vaccination. Vaccine, 26, 6433–6440.CrossRefGoogle Scholar
  7. 7.
    Shibagaki, N., & Udey, M. C. (2003). Dendritic cells transduced with TAT protein transduction domain-containing tyrosinase-related protein 2 vaccinate against murine melanoma. European Journal of Immunology, 33, 850–860.CrossRefGoogle Scholar
  8. 8.
    Gupta, B., & Torchilin, V. P. (2006). Transactivating transcriptional activator-mediated drug delivery. Expert Opinion on Drug Delivery, 3, 177–190.CrossRefGoogle Scholar
  9. 9.
    Schwarze, S. R., Ho, A., Vocero-Akbani, A., & Dowdy, S. F. (1999). In vivo protein transduction: delivery of a biologically active protein into the mouse. Science, 285, 1569–1572.CrossRefGoogle Scholar
  10. 10.
    Simsova, M., Sebo, P., & Leclerc, C. (2004). The adenylate cyclase toxin from Bordetella pertussis–a novel promising vehicle for antigen delivery to dendritic cells. International Journal of Medical Microbiology, 293, 571–576.CrossRefGoogle Scholar
  11. 11.
    Durantez, M., Fayolle, C., Casares, N., Belsue, V., Riezu-Boj, J. I., Sarobe, P., Prieto, J., Borras-Cuesta, F., Leclerc, C., Lasarte, J. J. Tumor therapy in mice by using a tumor antigen linked to modulin peptides from Staphylococcus epidermidis. Vaccine, 28, 7146–7154.Google Scholar
  12. 12.
    Lasarte, J. J., Casares, N., Gorraiz, M., Hervas-Stubbs, S., Arribillaga, L., Mansilla, C., et al. (2007). The extra domain A from fibronectin targets antigens to TLR4-expressing cells and induces cytotoxic T cell responses in vivo. Journal of Immunology, 178, 748–756.Google Scholar
  13. 13.
    Fayolle, C., Davi, M., Dong, H., Ritzel, D., Le Page, A., Knipping, F., Majlessi, L., Ladant, D., Leclerc, C. Induction of anti-Tat neutralizing antibodies by the CyaA vector targeting dendritic cells: influence of the insertion site and of the delivery of multicopies of the dominant Tat B-cell epitope. Vaccine, 28, 6930–6941.Google Scholar
  14. 14.
    Berraondo, P., Nouze, C., Preville, X., Ladant, D., & Leclerc, C. (2007). Eradication of large tumors in mice by a tritherapy targeting the innate, adaptive, and regulatory components of the immune system. Cancer Research, 67, 8847–8855.CrossRefGoogle Scholar
  15. 15.
    Hervas-Stubbs, S., Majlessi, L., Simsova, M., Morova, J., Rojas, M. J., Nouze, C., et al. (2006). High frequency of CD4 + T cells specific for the TB10.4 protein correlates with protection against Mycobacterium tuberculosis infection. Infection and Immunity, 74, 3396–3407.CrossRefGoogle Scholar
  16. 16.
    Bozzacco, L., Trumpfheller, C., Huang, Y., Longhi, M. P., Shimeliovich, I., Schauer, J. D., Park, C. G. and Steinman, R. M. HIV gag protein is efficiently cross-presented when targeted with an antibody towards the DEC-205 receptor in Flt3 ligand-mobilized murine DC. European Journal of Immunology, 40, 36–46.Google Scholar
  17. 17.
    Bozzacco, L., Trumpfheller, C., Siegal, F. P., Mehandru, S., Markowitz, M., Carrington, M., et al. (2007). DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8 + T cells in a spectrum of human MHC I haplotypes. Proceedings of the National Academy of Sciences of the United States of America, 104, 1289–1294.CrossRefGoogle Scholar
  18. 18.
    Bonifaz, L., Bonnyay, D., Mahnke, K., Rivera, M., Nussenzweig, M. C., & Steinman, R. M. (2002). Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8 + T cell tolerance. Journal of Experimental Medicine, 196, 1627–1638.CrossRefGoogle Scholar
  19. 19.
    Bonifaz, L. C., Bonnyay, D. P., Charalambous, A., Darguste, D. I., Fujii, S., Soares, H., et al. (2004). In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. Journal of Experimental Medicine, 199, 815–824.CrossRefGoogle Scholar
  20. 20.
    Castro, F. V., Tutt, A. L., White, A. L., Teeling, J. L., James, S., French, R. R., et al. (2008). CD11c provides an effective immunotarget for the generation of both CD4 and CD8 T cell responses. European Journal of Immunology, 38, 2263–2273.CrossRefGoogle Scholar
  21. 21.
    Idoyaga, J., Lubkin, A., Fiorese, C., Lahoud, M. H., Caminschi, I., Huang, Y., Rodriguez, A., Clausen, B. E., Park, C. G., Trumpfheller, C., Steinman, R. M. Comparable T helper 1 (Th1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proceedings of the National Academy of Sciences of the United States of America, 08, 2384–2389.Google Scholar
  22. 22.
    Pagel, J. M., Lin, Y., Hedin, N., Pantelias, A., Axworthy, D., Stone, D., et al. (2006). Comparison of a tetravalent single-chain antibody-streptavidin fusion protein and an antibody-streptavidin chemical conjugate for pretargeted anti-CD20 radioimmunotherapy of B-cell lymphomas. Blood, 108, 328–336.CrossRefGoogle Scholar
  23. 23.
    Wang, W. W., Das, D., McQuarrie, S. A., & Suresh, M. R. (2007). Design of a bifunctional fusion protein for ovarian cancer drug delivery: single-chain anti-CA125 core-streptavidin fusion protein. European Journal of Pharmaceutics and Biopharmaceutics, 65, 398–405.CrossRefGoogle Scholar
  24. 24.
    Wang, W. W., Das, D., & Suresh, M. R. (2009). A versatile bifunctional dendritic cell targeting vaccine vector. Molecular Pharmacology, 6, 158–172.CrossRefGoogle Scholar
  25. 25.
    Cheung, N. K., Modak, S., Lin, Y., Guo, H., Zanzonico, P., Chung, J., et al. (2004). Single-chain Fv-streptavidin substantially improved therapeutic index in multistep targeting directed at disialoganglioside GD2. Journal of Nuclear Medicine, 45, 867–877.Google Scholar
  26. 26.
    Schultz, J., Lin, Y., Sanderson, J., Zuo, Y., Stone, D., Mallett, R., et al. (2000). A tetravalent single-chain antibody-streptavidin fusion protein for pretargeted lymphoma therapy. Cancer Research, 60, 6663–6669.Google Scholar
  27. 27.
    Sano, T., Pandori, M. W., Chen, X., Smith, C. L., & Cantor, C. R. (1995). Recombinant core streptavidins. A minimum-sized core streptavidin has enhanced structural stability and higher accessibility to biotinylated macromolecules. Journal of Biological Chemistry, 270, 28204–28209.CrossRefGoogle Scholar
  28. 28.
    Berthet, F. X., Rasmussen, P. B., Rosenkrands, I., Andersen, P., & Gicquel, B. (1998). A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology, 144(Pt 11), 3195–3203.CrossRefGoogle Scholar
  29. 29.
    van Pinxteren, L. A., Ravn, P., Agger, E. M., Pollock, J., & Andersen, P. (2000). Diagnosis of tuberculosis based on the two specific antigens ESAT-6 and CFP10. Clinical and Diagnostic Laboratory Immunology, 7, 155–160.Google Scholar
  30. 30.
    Sorensen, A. L., Nagai, S., Houen, G., Andersen, P., & Andersen, A. B. (1995). Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infection and Immunity, 63, 1710–1717.Google Scholar
  31. 31.
    Karttunen, J., Sanderson, S., & Shastri, N. (1992). Detection of rare antigen-presenting cells by the lacZ T-cell activation assay suggests an expression cloning strategy for T-cell antigens. Proceedings of the National Academy of Sciences of the United States of America, 89, 6020–6024.CrossRefGoogle Scholar
  32. 32.
    Rock, K. L., Rothstein, L., Gamble, S., & Fleischacker, C. (1993). Characterization of antigen-presenting cells that present exogenous antigens in association with class I MHC molecules. Journal of Immunology, 150, 438–446.Google Scholar
  33. 33.
    Lutz, M. B., Kukutsch, N., Ogilvie, A. L., Rossner, S., Koch, F., Romani, N., et al. (1999). An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. Journal of Immunological Methods, 223, 77–92.CrossRefGoogle Scholar
  34. 34.
    Sanderson, S., & Shastri, N. (1994). LacZ inducible, antigen/MHC-specific T cell hybrids. International Immunology, 6, 369–376.CrossRefGoogle Scholar
  35. 35.
    Majlessi, L., Simsova, M., Jarvis, Z., Brodin, P., Rojas, M. J., Bauche, C., et al. (2006). An increase in antimycobacterial Th1-cell responses by prime-boost protocols of immunization does not enhance protection against tuberculosis. Infection and Immunity, 74, 2128–2137.CrossRefGoogle Scholar
  36. 36.
    Pahler, A., Hendrickson, W. A., Kolks, M. A., Argarana, C. E., & Cantor, C. R. (1987). Characterization and crystallization of core streptavidin. Journal of Biological Chemistry, 262, 13933–13937.Google Scholar
  37. 37.
    Bayer, E. A., Ben-Hur, H., Hiller, Y., & Wilchek, M. (1989). Post-secretory modifications of streptavidin. Biochemical Journal, 259, 369–376.Google Scholar
  38. 38.
    Renshaw, P. S., Panagiotidou, P., Whelan, A., Gordon, S. V., Hewinson, R. G., Williamson, R. A., et al. (2002). Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6*CFP-10 complex. Implications for pathogenesis and virulence. Journal of Biological Chemistry, 277, 21598–21603.CrossRefGoogle Scholar
  39. 39.
    Meher, A. K., Bal, N. C., Chary, K. V., & Arora, A. (2006). Mycobacterium tuberculosis H37Rv ESAT-6-CFP-10 complex formation confers thermodynamic and biochemical stability. FEBS Journal, 273, 1445–1462.CrossRefGoogle Scholar
  40. 40.
    Frigui, W., Bottai, D., Majlessi, L., Monot, M., Josselin, E., Brodin, P., et al. (2008). Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathogens, 4, e33.CrossRefGoogle Scholar
  41. 41.
    Prausnitz, M. R., & Langer, R. (2008). Transdermal drug delivery. Nature Biotechnology, 26, 1261–1268.CrossRefGoogle Scholar
  42. 42.
    Hegde, N. R., Kaveri, S. V. Bayry, J. (2011). Recent advances in the administration of vaccines for infectious diseases: microneedles as painless delivery devices for mass vaccination. Drug Discovery Today, in press, doi:10.1016/j.drudis.2011.07.004.
  43. 43.
    Sullivan, S. P., Koutsonanos, D. G., Del Pilar Martin, M., Lee, J. W., Zarnitsyn, V., Choi, S. O., et al. (2010). Dissolving polymer microneedle patches for influenza vaccination. Nature Medicine, 16, 915–920.CrossRefGoogle Scholar
  44. 44.
    Guy, B. (2007). The perfect mix: recent progress in adjuvant research. Nature Reviews. Microbiology, 5, 505–517.CrossRefGoogle Scholar
  45. 45.
    Hackstein, H., Taner, T., Logar, A. J., & Thomson, A. W. (2002). Rapamycin inhibits macropinocytosis and mannose receptor-mediated endocytosis by bone marrow-derived dendritic cells. Blood, 100, 1084–1087.CrossRefGoogle Scholar
  46. 46.
    Navarrete, A. M., Delignat, S., Teillaud, J. L., Kaveri, S. V., Lacroix-Desmazes, S., & Bayry, J. (2011). CD4(+)CD25(+) regulatory T cell-mediated changes in the expression of endocytic receptors and endocytosis process of human dendritic cells. Vaccine, 29, 2649–2652.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ondrej Stanek
    • 1
    • 2
  • Irena Linhartova
    • 1
  • Laleh Majlessi
    • 3
    • 4
  • Claude Leclerc
    • 3
    • 4
  • Peter Sebo
    • 1
  1. 1.Laboratory of Molecular Biology of Bacterial PathogensInstitute of Microbiology of the ASCR, v. v. i.PragueCzech Republic
  2. 2.Institute of Chemical TechnologyPragueCzech Republic
  3. 3.Institut Pasteur, Unité de Régulation Immunitaire et VaccinologieParisFrance
  4. 4.INSERM U1041ParisFrance

Personalised recommendations