Molecular Biotechnology

, Volume 51, Issue 2, pp 183–199 | Cite as

Development of Vaccine Delivery Vehicles Based on Lactic Acid Bacteria



Live recombinant bacteria represent attractive antigen delivery systems able to induce both mucosal and systemic immune responses against heterologous antigens. The first live recombinant bacterial vectors developed were derived from attenuated pathogenic microorganisms. In addition to the difficulties often encountered in the construction of stable attenuated mutants of pathogenic organisms, attenuated pathogens may retain a residual virulence level that renders them unsuitable for the vaccination of partially immunocompetent individuals such as infants, the elderly or immunocompromised patients. As an alternative to this strategy, non-pathogenic food-grade lactic acid bacteria (LAB) maybe used as live antigen carriers. This article reviews LAB vaccines constructed using antigens other than tetanus toxin fragment C, against bacterial, viral, and parasitic infective agents, for which protection studies have been performed. The antigens utilized for the development of LAB vaccines are briefly described, along with the efficiency of these systems in protection studies. Moreover, the key factors affecting the performance of these systems are highlighted.


Antigen Immunization route Lactic acid bacteria Live vaccine Vaccine delivery 


  1. 1.
    Mielcarek, N., Alonso, S., & Locht, C. (2001). Nasal vaccination using live bacterial vectors. Advanced Drug Delivery Reviews, 51, 55–69.CrossRefGoogle Scholar
  2. 2.
    Moore, R. J., Stewart, D. J., Lund, K., & Hodgson, L. M. (2001). Vaccination against ovine footrot using a live bacterial vector to deliver basic protease antigen. FEMS Microbiology Letters, 194, 193–196.CrossRefGoogle Scholar
  3. 3.
    Giudice, E. L., & Campbell, J. D. (2006). Needle free vaccine delivery. Advanced Drug Delivery Reviews, 58, 68–89.CrossRefGoogle Scholar
  4. 4.
    Formal, S. B., Baron, L. S., Kopecko, D. J., Washington, O., Powell, C., & Life, C. A. (1981). Construction of a potential bivalent vaccine strain: Introduction of Shigella sonnei form I antigen genes into the galE Salmonella typhi Ty21a typhoid vaccine strain. Infection and Immunity, 34, 746–750.Google Scholar
  5. 5.
    Curtiss, R. (2002). Bacterial infectious disease control by vaccine development. Journal of Clinical Investigation, 110, 1061–1066.Google Scholar
  6. 6.
    Konings, W., Kok, J., Kuipers, O. S., & Poolman, B. (2000). Lactic acid bacteria: The bugs of new millennium. Current Opinion in Microbiology, 3, 276–282.CrossRefGoogle Scholar
  7. 7.
    Ross, R. P., Morgan, S., & Hill, C. (2002). Preservation and fermentation: Past, present and future. Int. Journal of Food Microbiology, 79, 3–16.CrossRefGoogle Scholar
  8. 8.
    Schnurer, J., & Magnusson, J. (2005). Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science & Technology, 16, 70–78.CrossRefGoogle Scholar
  9. 9.
    Lee, J.-S., Poo, H., Han, D. P., Hong, S.-P., Kim, K., Cho, M. W., et al. (2006). Mucosal immunization with surface displayed severe acute respiratory syndrome coronovirus spike protein on Lactobacillus casei induces neutralization antibodies in mice. Journal of Virology, 80, 4079–4087.CrossRefGoogle Scholar
  10. 10.
    Seegers, J. F. M. L. (2002). Lactobacilli as live vaccine delivery vectors: Progress and prospects. Trends in Biotechnology, 20, 508–515.CrossRefGoogle Scholar
  11. 11.
    Wells, J. M., Robinson, K., Chamberlin, L. M., Schofield, K. M., & Le Page, R. W. F. (1996). Lactic acid bacteria as vaccine delivery vehicles. Anton van Leeuwenhoek, 70, 317–330.CrossRefGoogle Scholar
  12. 12.
    Dale, J. B. (2008). Current status of group A streptococcal vaccine development. In A. Finn & A. J. Pollard (Eds.), Hot topics in infection and immunity in children IV (pp. 53–63). NY: Springer.CrossRefGoogle Scholar
  13. 13.
    Mannam, P., Jones, K. F., & Geller, B. L. (2004). Mucosal vaccine made from live, recombinant Lactococcus lactis protects mice against pharyngeal infection with Streptococcus pyogenes. Infection and Immunity, 72, 3444–3450.CrossRefGoogle Scholar
  14. 14.
    Dramsi, S., Caliot, E., Bonne, I., Guadagnini, S., Prevost, M. C., Kojadinavic, M., et al. (2006). Assembly and role of pili in group B. streptococci. Molecular Microbiology, 60, 1401–1413.CrossRefGoogle Scholar
  15. 15.
    Buccato, S., Maione, D., Rinaudo, C. D., Volpini, G., Taddei, A. R., Rosini, R., et al. (2006). Use of Lactococcus lactis expressing pili from group B Streptococcus as a broad-coverage vaccine against streptococcal disease. The Journal of Infectious Diseases, 194, 331–340.CrossRefGoogle Scholar
  16. 16.
    Bogaert, D., Hermans, D. W., Adrian, P. V., Rumke, H. C., & de Groot, R. (2004). Pneumococcal vaccines: An update on current strategies. Vaccine, 2, 2209–2220.CrossRefGoogle Scholar
  17. 17.
    Campos, I. B., Darrieux, M., Ferreira, D. M., Miyaji, E. N., Silva, D. A., Areas, A. P. M., et al. (2008). Nasal immunization of mice with Lactobacillus casei expressing the pneumococcal surface protein A: Induction of antibodies, complement deposition and partial protection against Streptococcus pneumoniae challenge. Microbes and Infection, 10, 481–488.CrossRefGoogle Scholar
  18. 18.
    Hannify, S. B., Carter, A. T., Hitchin, E., & Wells, J. M. (2007). Mucosal delivery of a pneumococcal vaccine using Lactococcus lactis affords protection against respiratory infection. The Journal of Infectious Diseases, 195, 185–193.CrossRefGoogle Scholar
  19. 19.
    Oliviera, M. L. S., Areas, A. P. M., Campos, I. B., Monedro, V., Perez-Martinez, G., Miyaji, E. N., et al. (2006). Induction of systemic and mucosal immune response and decrease in Streptococcus pneumoniae colonization by nasal inoculation of mice with recombinant lactic acid bacteria expressing pneumococcal surface antigen A. Microbes and Infection, 8, 1016–1024.CrossRefGoogle Scholar
  20. 20.
    Pouwels, P. H., Leer, R. J., Shaw, M., den Bak-Glashouwer, M.-J. H., Tielen, F. D., Smit, E., et al. (1998). Lactic acid bacteria as antigen delivery vehicles for oral immunization purposes. International Journal of Food Microbiology, 41, 155–167.CrossRefGoogle Scholar
  21. 21.
    Wells, J. M., Robinson, K., Chamberlain, L. M., Schofield, K. M., & Le Page, R. W. F. (1996). Lactic acid bacteria as vaccine delivery vehicles. Anton van Leeuwenhoek, 70, 317–330.CrossRefGoogle Scholar
  22. 22.
    Green, B. A., Zhang, Y., Masi, A. W., Barniak, V., Wheterell, M., Smith, R. P., et al. (2005). PppA, a surface exposed protein of Streptococcus pneumoniae, elicits cross-reactive antibodies that reduce colonization in a murine intranasal immunization and challenge model. Infection and Immunity, 73, 981–989.CrossRefGoogle Scholar
  23. 23.
    Medina, M., Villena, J., Vintini, E., Hebert, E. M., Raya, R., & Alvarez, S. (2008). Nasal immunization with Lactococcus lactis expressing the pnemococcal protective protein A induces protective immunity in mice. Infection and Immunity, 76, 2696–2705.CrossRefGoogle Scholar
  24. 24.
    Corthesy-Theulaz, I., Porta, N., Glauser, M., Sarage, E., Vaney, A. C., Haas, R., et al. (1995). Oral immunization with Helicobacter pylori urease B subunit as a treatment against Helicobacteri infection in mice. Gastroenterology, 109, 115–121.CrossRefGoogle Scholar
  25. 25.
    Gu, Q., Song, D., & Zhu, M. (2009). Oral vaccination of mice against Helicobacter pylori with recombinant Lactococcus lactis expressing urease subunit B. FEMS Immunology and Medical Microbiology, 56, 197–203.CrossRefGoogle Scholar
  26. 26.
    Corthesy, B., Boris, S., Isler, P., Grangette, C., & Mercenier, A. (2005). Oral immunization of mice with lactic acid bacteria producing Helicobacter pylori Urease B subunit partially protects against challenge with Helicobacter felis. The Journal of Infectious Diseases, 192, 1441–1449.CrossRefGoogle Scholar
  27. 27.
    Walker, R. I., Steel, D., & Aguado, T. (2007). Analysis of strategies to successfully vaccinate infants in developing countries against enterotoxigenic E. coli (ETEC) disease. Vaccine, 25, 2545–2566.CrossRefGoogle Scholar
  28. 28.
    Wu, C.-M., & Chung, T.-C. (2007). Mice protected by oral immunization with Lactobacillus reuteri secreting fusion proteins of Escherichia coli enterotoxin subunit protein. FEMS Immunology and Medical Microbiology, 50, 354–365.CrossRefGoogle Scholar
  29. 29.
    Nagy, B., & Feket, P. Z. (2005). Enterotoxigenic Escherichia coli in veterinary medicine. International Journal of Medical Microbiology, 295, 443–454.CrossRefGoogle Scholar
  30. 30.
    Wei, C.-H., Liu, J.-K., Hou, X.-L., Yu, L.-Y., Lee, J.-S., & Kim, C.-J. (2010). Immunogenicity and protective efficacy of orally or intranasally administered recombinant Lactobacillus casei expressing ETEC K99. Vaccine, 28, 4113–4118.CrossRefGoogle Scholar
  31. 31.
    Chu, H., Kang, S., Ha, S., Cho, K., Park, S.-M., Han, K.-H., et al. (2005). Lactobacillus acidophilus expressing recombinant K99 adhesive fimbriae has an inhibitory effect on adhesion of enterotoxigenic Escherichia coli. Microbiology and Immunology, 49, 941–948.Google Scholar
  32. 32.
    Liu, J.-K., Hou, X.-L., Wei, C.-H., Yu, L.-Y., He, X.-J., Wang, G.-H., et al. (2009). Induction of immune responses in mice after oral immunization with recombinant Lactobacillus casei strains expressing enterotoxigenic Escherichia coli F41 fimbrial protein. Applied and Environmental Microbiology, 75, 4491–4497.CrossRefGoogle Scholar
  33. 33.
    Hu, C. X., Xu, Z. R., Li, W. F., Dong, N., Lu, P., & Fu, L. L. (2009). Secretory expression of K88 (F4) fimbrial adhesin FaeG by recombinant Lactococcus lactis for oral vaccination and its protective immune response in mice. Biotechnology Letters, 31, 991–997.CrossRefGoogle Scholar
  34. 34.
    Smeds, A., Hemmann, K., Jakava-Viljanen, M., Pelkinen, S., Imberechts, H., & Palva, A. (2001). Characterization of the adhesin of Escherichia coli F18 fimbriae. Infection and Immunity, 69, 7941–7945.CrossRefGoogle Scholar
  35. 35.
    Lindholm, A., Smeds, A., & Palva, A. (2004). Receptor binding domain of Escherichia coli F18 fimbrial adhesin FedF can be both efficiently secreted and surface displayed in a functional form in Lactococcus lactis. Applied and Environmental Microbiology, 70, 2061–2071.CrossRefGoogle Scholar
  36. 36.
    Toyota-Hantani, Y., Inoue, M., Ekawa, T., Ohta, H., Igimi, S., & Baba, E. (2008). Importance of the major FliC antigenic site of Salmonella enteritidis as a subunit vaccine antigen. Vaccine, 26, 4135–4137.CrossRefGoogle Scholar
  37. 37.
    Ramos, H. C., Rumbo, M., & Sirad, J.-C. (2004). Bacterial flagellins: Mediators of pathogenicity and host immune responses in mucosa. Trends in Microbiology, 12, 509–517.CrossRefGoogle Scholar
  38. 38.
    Kajikawa, A., Satoh, E., Leer, R. J., Yamamoto, S., & Igimi, S. (2007). Intragastic immunization with recombinant Lactobacillus casei expressing flagellar antigen confers antibody-independent protective immunity against Salmonella enterica serovar Enteritidis. Vaccine, 25, 3599–3605.CrossRefGoogle Scholar
  39. 39.
    Vazquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., & Goebel, W. (2001). Listeria pathogenesis and virulence determinants. Clinical Microbiology Reviews, 14, 584–640.CrossRefGoogle Scholar
  40. 40.
    Harty, J. T., & Pamer, E. G. (1995). CD8+ T lymphocytes specific for the secreted p60 antigen protects against Listeria monocytogenes infection. Journal of Immunology, 154, 4642–4650.Google Scholar
  41. 41.
    Bahey-El-Din, M., Casey, P. G., Griffin, B. T., & Gahan, C. G. M. (2008). Lactococcus lactis-expressing listeriolysin O (LLO) provides protection and specific CD8+ T cells against Listeria monocytogenes in the murine infection model. Vaccine, 26, 5304–5314.CrossRefGoogle Scholar
  42. 42.
    Halling-Brown, M., Sansom, C. E., Avies, M., Titball, R. W., & Moss, D. S. (2008). Are bacterial vaccine antigens T-cell epitope depleted. Trends in Immunology, 29, 374–379.CrossRefGoogle Scholar
  43. 43.
    Overheim, K. A., DePaolo, R. W., Debord, K. L., Morrin, E. M., Anderson, D. M., Green, N. M., et al. (2005). LcrV plaque vaccine with altered immunomodulatory properties. Infection and Immunity, 73, 5152–5159.CrossRefGoogle Scholar
  44. 44.
    Daniel, C., Sebbane, F., Poiret, S., Goudercourt, D., Dewulf, J., Mullet, C., et al. (2009). Protection against Yersinia pseudotuberculosis infection conferred by a Lactococcus lactis mucosal delivery vector secreting LcrV. Vaccine, 27, 1141–1144.CrossRefGoogle Scholar
  45. 45.
    Friedlander, A. M., & Little, S. F. (2009). Advances in the development of next- generation anthrax vaccines. Vaccine, 27, D28–D32.CrossRefGoogle Scholar
  46. 46.
    Mohammadzadeh, M., Duong, T., Sandwick, S. J., Hoover, T., & Klaenhammer, T. R. (2009). Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge. Proceedings of the National Academy of Science, 106, 4331–4336.CrossRefGoogle Scholar
  47. 47.
    Coker, C., Poore, C. A., Li, X., & Mobely, H. L. (2000). Pathogenesis of Proteus mirabilis urinary tract infection. Microbes and Infection, 2, 1497–1509.CrossRefGoogle Scholar
  48. 48.
    Scavone, P., Miyoshi, A., Rial, A., Chabalgoity, A., Langella, P., Azevedo, V., et al. (2007). Intranasal immunization with recombinant Lactococcus lactis displaying either anchored or secreted forms of Proteus mirabilis MrpA fimbrial protein confers specific immune response and induces a significant reduction of kidney bacterial colonization in mice. Microbes and Infection, 9, 821–828.CrossRefGoogle Scholar
  49. 49.
    Witvliet, M. H., Burns, D. L., Brennan, M. J., Poolman, J. T., & Manclark, C. R. (1989). Binding of pertussis toxin to eukaryotic cells and glycoproteins. Infection and Immunity, 57, 3324–3330.Google Scholar
  50. 50.
    Lee, S. F., March, R. J., Halperin, S. A., Faulkner, G., & Gao, L. (1999). Surface expression of a protective recombinant pertussis toxin S1 subunit fragment in Streptococcus gordonii. Infection and Immunity, 67, 1511–1516.Google Scholar
  51. 51.
    Fikrig, E., Telford, S. R., Barthold, S. W., Kantor, F. S., Spielman, A., & Flavell, R. A. (1992). Elimination of Borrelia burgdorferi from vector ticks feeding on OspA- immunized mice. Proceedings of the National Academy of Science, 89, 5418–5421.CrossRefGoogle Scholar
  52. 52.
    Rio, B. D., Dattwyler, R. J., Aroso, M., Neves, V., Meirelles, L., Seegers, J. F. M. L., et al. (2008). Oral immunization with recombinant Lactobacillus plantarum induces a protective immune response in mice with lyme disease. Clinical and Vaccine Immunology, 15, 1429–1435.CrossRefGoogle Scholar
  53. 53.
    Shimoji, Y. (2000). Pathogenicity of Erysipelothrix rhusiopathiae: Virulence factors and protective immunity. Microbes and Infection, 9, 965–972.CrossRefGoogle Scholar
  54. 54.
    Cheun, H. I., Kawamoto, K., Hiramatsu, M., Tamaoki, H., Shirahata, T., Igimi, S., et al. (2004). Protective immunity of SpaA-antigen producing Lactococcus lactis against Erysipelothrix rhusiopathiae infection. Journal of Applied Microbiology, 96, 1347–1353.CrossRefGoogle Scholar
  55. 55.
    Wyatt, R., Sullivan, N., Thali, M., Repke, H., Ho, D., Robinson, J., et al. (1993). Functional and immunogenic characterization of human immunodeficiency virus type 1 envelope glycoproteins containing deletions of major variable regions. Journal of Virology, 67, 4557–4565.Google Scholar
  56. 56.
    Xin, K.-Q., Hoshino, Y., Toda, Y., Igimi, S., Kojima, Y., Jounai, N., et al. (2003). Immunogenicity and protective efficacy of orally administered recombinant Lactococcus lactis expressing surface-bound HIV Env. Blood, 102, 223–228.CrossRefGoogle Scholar
  57. 57.
    He, Y., Zhou, Y., Liu, S., Kou, Z., Li, W., Farzan, M., et al. (2004). Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralization antibodies: Implication for developing subunit vaccine. Biochemical and Biophysical Research Communications, 324, 773–781.CrossRefGoogle Scholar
  58. 58.
    Krinbauer, R., Booy, F., Cheng, N., Lowy, D. R., & Schiller, J. T. (1992). Papillomavirus L1 major capsid protein self assembles into virus-like particles that are highly immunogenic. Proceedings of the National Academy of Science, 89, 12180–12184.CrossRefGoogle Scholar
  59. 59.
    Kim, S. N., Jeong, H. S., Park, S. N., & Kim, H.-J. (2007). Purification and immunogenicity study of human papilomavirus type 16 L1 protein in Saccharomyces cerevisiae. Journal of Virological Methods, 139, 24–30.CrossRefGoogle Scholar
  60. 60.
    Aires, K. A., Cianociarullo, A. M., Carneiro, S. M., Villa, L. L., Boccardo, E., Perez-Martinez, G., et al. (2006). Production of human papilomavirus type 16 L1 virus like particles by recombinant Lactobacillus casei cells. Applied and Environmental Microbiology, 72, 745–752.CrossRefGoogle Scholar
  61. 61.
    Choo, C. K., Rorke, E. A., & Eckert, R. L. (1994). Differentiation-independent constitutive expression of the human papillomavirus type 16 E6 and E7 oncogenes in Caski cervical tumor cell line. Journal of General Virology, 75, 1139–1147.CrossRefGoogle Scholar
  62. 62.
    Poo, H., Pyo, H.-M., Lee, T.-Y., Yoon, S.-W., Lee, J.-S., Kim, C.-J., et al. (2006). Oral administration of human papilomavirus type 16 E7 displayed on Lactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice. International Journal of Cancer, 119, 1702–1709.CrossRefGoogle Scholar
  63. 63.
    Bermudez-Humaran, L. G., Cortes-Perez, N. G., Lefever, F., Guimaraes, V., Rabot, S., Alcocer-Gonnzalez, J. M., et al. (2005). A novel mucosal vaccine based on live lactococci expressing E7 antigen and IL-12 induces systemic and mucosal immune responses and protects mice against human papillomavirus type 16-induced tumors. Journal of Immunology, 175, 7297–7302.Google Scholar
  64. 64.
    Crill, W. D., Hughes, H. R., Delorey, M. J., & Chang, G.-J. J. (2009). Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens. Plos One, 4, e4991.CrossRefGoogle Scholar
  65. 65.
    Sim, A. C. N., Lin, W., Tan, G. K. X., Sim, M. S. T., Chow, V. T. K., & Alonso, S. (2008). Induction of neutralizing antibodies against dengue virus type 2 upon mucosal administration of a recombinant Lactococcus lactis strain expressing envelope domain III antigen. Vaccine, 26, 1145–1154.CrossRefGoogle Scholar
  66. 66.
    Estes, M. K., & Cohen, J. (1989). Rotavirus gene structure and function. Microbiological Reviews, 53, 410–449.Google Scholar
  67. 67.
    Perez, C. A., Eichwald, C., Burrone, O., & de Mendoza, D. (2005). Rotavirus VP7 antigen produced by Lactococcus lactis induces neutralizing antibodies in mice. Journal of Applied Microbiology, 99, 1158–1164.CrossRefGoogle Scholar
  68. 68.
    Li, Y.-J., Ma, G.-P., Li, G.-W., Qiao, X.-Y., Ge, J.-W., Tang, L.-J., et al. (2010). Oral vaccination with the porcine rotavirus VP4 outer capsid protein expressed by Lactococcus lactis induces specific antibody production. Journal of Biomedicine and Biotechnology, 2010, 1–9.Google Scholar
  69. 69.
    Qiao, X., Li, G., Wang, X., Li, X., Liu, M., & Li, Y. (2009). Recombinant porcine rotavirus VP4 and VP4-LTB expressed in Lactobacillus casei induced mucosal and systemic antibody responses in mice. BMC Microbiology, 9, 249.CrossRefGoogle Scholar
  70. 70.
    Godet, M., Grosclaude, J., Delmas, B., & Laude, H. (1994). Major-receptor binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. Journal of Virology, 68, 8008–8016.Google Scholar
  71. 71.
    Tang, L., & Li, Y. (2009). Oral immunization of mice with recombinant Lactococcus lactis expressing porcine transmissible gastroenteritis virus spike glycoprotein. Virus Genes, 39, 238–245.CrossRefGoogle Scholar
  72. 72.
    Ho, P. S., Kwang, J., & Lee, Y. K. (2005). Intragstric administration of Lactobacillus casei expressing transmissible gastroenteritis coronavirus spike glycoprotein induced antibody production. Vaccine, 23, 1335–1342.CrossRefGoogle Scholar
  73. 73.
    Hou, X.-L., Yu, L.-Y., Liu, J., & Wang, G.-H. (2007). Surface-displayed porcine epidemic diarrhea viral (PEDV) antigens on lactic acid bacteria. Vaccine, 26, 24–31.CrossRefGoogle Scholar
  74. 74.
    Kamstrup, S., Langeveld, J., Botner, A., Nielson, J., Schaaper, W. M., Boshuizen, R. S., et al. (1998). Mapping the antigenic structure of porcine parvovirus at the level of peptides. Virus Research, 53, 163–173.CrossRefGoogle Scholar
  75. 75.
    Yigang, X. U., & Yijing, L. I. (2007). Construction of recombinant Lactobacillus casei efficiently surface displayed and secreted porcine parvovirus VP2 protein and comparison of the immune responses induced by oral immunization. Immunology, 124, 68–75.CrossRefGoogle Scholar
  76. 76.
    Cooper, J. A. (1993). Merozoite surface antigen-1 of Plasmodium. Parasitol Today, 9, 50–54.CrossRefGoogle Scholar
  77. 77.
    Chandy, C. J., O’Donnell, R. A., Sumba, P. O., Moormann, A. M., de Koning-Ward, T. F., King, C. L., et al. (2004). Evidence that invasion-inhibitory antibodies specific for the 19-kDa fragment of merozoite surface protein-1 (MSP-119) can play a protective role against blood-stage Plasmodium falciparum infection in individuals in a malaria endemic area of Africa. Journal of Immunology, 173, 666–672.Google Scholar
  78. 78.
    Tian, J. H., Kumar, S., Kaslow, D. C., & Miller, L. H. (1997). Comparison of protection induced by immunization with recombinant proteins from different regions of merozoite surface protein 1 of Plasmodium yoelii. Infection and Immunity, 65, 3032–3036.Google Scholar
  79. 79.
    Zhang, Z.-H., Jiang, P.-H., Li, N.-J., Shi, M., & Huang, W. (2005). Oral vaccination of mice against rodent malaria with recombinant Lactococcus lactis expressing MSP119. World Journal of Gastroenterology, 11, 6975–6980.Google Scholar
  80. 80.
    Lujan, H. D., Mowatt, M. R., Conrad, J. T., Bowers, B., & Nash, T. E. (1995). Identification of a novel Giardia lamblia cyst wall protein with leucin-rich repeats. Implications for secretory granule formation and protein assembly into the cyst wall. Journal of Biological Chemistry, 270, 29307–29313.CrossRefGoogle Scholar
  81. 81.
    Lee, P., & Faubert, G. M. (2006). Expression of the Giardia lamblia cyst wall protein 2 in Lactococcus lactis. Microbiology, 152, 1981–1990.CrossRefGoogle Scholar
  82. 82.
    Kutzler, M. A., & Weiner, D. B. (2008). DNA vaccines: Ready for prime time. Nature Reviews, 9, 776–788.CrossRefGoogle Scholar
  83. 83.
    Hu, Y.-C. (2005). Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmaceutica Sinica, 4, 405–416.CrossRefGoogle Scholar
  84. 84.
    Fyan, E. F., Webster, R. G., Fuller, D. H., Haynes, J. R., Santoro, J. C., & Robinson, H. L. (1993). DNA vaccines: Protective immunization by parental, mucosal and gene gun inoculation. Proceedings of the National Academy of Science, 90, 11478–11482.CrossRefGoogle Scholar
  85. 85.
    Jones, D. H., Clegg, J. C. S., & Farra, G. H. (1998). Oral delivery of micro-encapsulated DNA vaccines. In F. Brown & L. R. Haaheim (Eds.), Modulation of the immune response to vaccine antigens, vol 92: Development in biologics (pp. 149–155). Basel, Switzerland: Karger.Google Scholar
  86. 86.
    Steidler, L., Neiryunk, S., Huyghebaert, N., Snoeck, V., Vermiere, A., Godderis, B., et al. (2003). Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nature Biotechnology, 21, 785–789.CrossRefGoogle Scholar
  87. 87.
    Braat, H., Rottiers, P., Hommes, D. W., Huyghebaert, N., Remaut, E., Remon, J. P., et al. (2006). A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clinical Gastroenterology and Hepatology, 4, 754–759.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BiotechnologyRazi Vaccine and Serum Research InstituteKarajIran
  2. 2.Food Industries and Biotechnology Research CenterAmirkabir University of TechnologyTehranIran

Personalised recommendations