Molecular Biotechnology

, Volume 49, Issue 1, pp 97–107 | Cite as

Finding Cancer-Associated miRNAs: Methods and Tools

  • Anastasis Oulas
  • Nestoras Karathanasis
  • Annita Louloupi
  • Panayiota PoiraziEmail author


Changes in the structure and/or the expression of protein coding genes were thought to be the major cause of cancer for many decades. The recent discovery of non-coding RNA (ncRNA) transcripts (i.e., microRNAs) suggests that the molecular biology of cancer is far more complex. MicroRNAs (miRNAs) have been under investigation due to their involvement in carcinogenesis, often taking up roles of tumor suppressors or oncogenes. Due to the slow nature of experimental identification of miRNA genes, computational procedures have been applied as a valuable complement to cloning. Numerous computational tools, implemented to recognize the features of miRNA biogenesis, have resulted in the prediction of novel miRNA genes. Computational approaches provide clues as to which are the dominant features that characterize these regulatory units and furthermore act by narrowing down the search space making experimental verification faster and cheaper. In combination with large scale, high throughput methods, such as deep sequencing, computational methods have aided in the discovery of putative molecular signatures of miRNA deregulation in human tumors. This review focuses on existing computational methods for identifying miRNA genes, provides an overview of the methodology undertaken by these tools, and underlies their contribution towards unraveling the role of miRNAs in cancer.


MicroRNAs Gene prediction Software Tools comparison Cancer 



This study was supported by the action 8.3.1 (Reinforcement Pro-gram of Human Research Manpower—”PENED 2003”, [03EΔ842]) of the operational program ‘‘competitiveness’’ of the Greek General Secretariat for Research and Technology, a Marie Curie Fellowship of the European Commission [PIOF-GA-2008-219622], the National Science Foundation [NSF 0515357] and the “High-Performance Computing Infrastructure for South East Europe’s Research Communities—HP-SEE” project [FP7 Capacities grant agreement Nr. 261499].


  1. 1.
    Fantom, C. (2005). The transcriptional landscape of the mammalian genome. Science, 309, 1559–1563.CrossRefGoogle Scholar
  2. 2.
    Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research, 64, 3753–3756.CrossRefGoogle Scholar
  3. 3.
    Dong, Q., Meng, P., Wang, T., Qin, W., Qin, W., et al. (2010). MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2. PLoS One, 5, e10147.CrossRefGoogle Scholar
  4. 4.
    Yang, Q., Jie, Z., Cao, H., Greenlee, A. R., Yang, C., et al. (2011). Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis, 32, 713–722.CrossRefGoogle Scholar
  5. 5.
    Hulf, T., Sibbritt, T., Wiklund, E. D., Bert, S., Strbenac, D., et al. (2011). Discovery pipeline for epigenetically deregulated miRNAs in cancer: Integration of primary miRNA transcription. BMC Genomics, 12, 54.CrossRefGoogle Scholar
  6. 6.
    Kheir, T. B., Futoma-Kazmierczak, E., Jacobsen, A., Krogh, A., Bardram, L., et al. (2011). miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Molecular Cancer, 10, 29.CrossRefGoogle Scholar
  7. 7.
    Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99, 15524–15529.CrossRefGoogle Scholar
  8. 8.
    Michael, M. Z., O’Connor, S. M., van Holst Pellekaan, N. G., Young, G. P., & James, R. J. (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Molecular Cancer Research, 1, 882–891.Google Scholar
  9. 9.
    Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., et al. (2005). A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Research, 65, 9628–9632.CrossRefGoogle Scholar
  10. 10.
    He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature, 435, 828–833.CrossRefGoogle Scholar
  11. 11.
    Tagawa, H., & Seto, M. (2005). A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia, 19, 2013–2016.CrossRefGoogle Scholar
  12. 12.
    Metzler, M., Wilda, M., Busch, K., Viehmann, S., & Borkhardt, A. (2003). High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer, 39, 167–169.CrossRefGoogle Scholar
  13. 13.
    Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America, 101, 2999–3004.CrossRefGoogle Scholar
  14. 14.
    Lai, E. C., Tomancak, P., Williams, R. W., & Rubin, G. M. (2003). Computational identification of Drosophila microRNA genes. Genome Biology, 4, R42–R61.CrossRefGoogle Scholar
  15. 15.
    Lim, L. P., Lau, N. C., Weinstein, E. G., Abdelhakim, A., & Yekta, S. (2003). The microRNAs of Caenorhabditis elegans. Genes and Development, 16, 991–1008.CrossRefGoogle Scholar
  16. 16.
    Weber, M. J. (2005). New human and mouse microRNA genes found by homology search. FEBS Journal, 272, 59–73.CrossRefGoogle Scholar
  17. 17.
    Legendre, M., Lambert, A., & Gautheret, D. (2004). Profile-based detection of microRNA precursors in animal genomes. Bioinformatics, 21, 841–845.CrossRefGoogle Scholar
  18. 18.
    Wang, X., Zhang, J., Li, F., Gu, J., He, T., et al. (2005). MicroRNA identification based on sequence and structure alignment. Bioinformatics, 21, 3610–3614.CrossRefGoogle Scholar
  19. 19.
    Buck, A. H., Santoyo-Lopez, J., Robertson, K. A., Kumar, D. S., Reczko, M., et al. (2007). Discrete clusters of virus-encoded micrornas are associated with complementary strands of the genome and the 7.2-kilobase stable intron in murine cytomegalovirus. Journal of Virology, 81, 13761–13770.CrossRefGoogle Scholar
  20. 20.
    Helvik, S. A., Snove, O., Jr., & Saetrom, P. (2006). Reliable prediction of Drosha processing sites improves microRNA gene prediction. Bioinformatics, 23, 142–149.CrossRefGoogle Scholar
  21. 21.
    Hertel, J., & Stadler, P. F. (2006). Hairpins in a Haystack: Recognizing microRNA precursors in comparative genomics data. Bioinformatics, 22, e197–e202.CrossRefGoogle Scholar
  22. 22.
    Sewer, A., Paul, N., Landgraf, P., Aravin, A., Pfeffer, S., et al. (2005). Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics, 6, 267–281.CrossRefGoogle Scholar
  23. 23.
    Xue, C., Li, F., He, T., Liu, G. P., Li, Y., et al. (2005). Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics, 6, 310–316.CrossRefGoogle Scholar
  24. 24.
    Batuwita, R., & Palade, V. (2009). microPred: Effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics, 25, 989–995.CrossRefGoogle Scholar
  25. 25.
    Jiang, P., Wu, H., Wang, W., Ma, W., Sun, X., et al. (2007). MiPred: Classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Research, 35, W339–W344.CrossRefGoogle Scholar
  26. 26.
    Ng, K. L., & Mishra, S. K. (2007). De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics, 23, 1321–1330.CrossRefGoogle Scholar
  27. 27.
    Wang, M., Song, X., Han, P., Li, W., & Jiang, B. (2010). New syntax to describe local continuous structure-sequence information for recognizing new pre-miRNAs. Journal of Theoretical Biology, 264, 578–584.CrossRefGoogle Scholar
  28. 28.
    Nam, J. W., Shin, K. R., Han, J., Lee, Y., Kim, V. N., et al. (2005). Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acid Research, 33, 3570–3581.CrossRefGoogle Scholar
  29. 29.
    Yousef, M., Nebozhyn, M., Shatkay, H., Kanterakis, S., Showe, L. C., et al. (2006). Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinformatics, 22, 1325–1334.CrossRefGoogle Scholar
  30. 30.
    Terai, G., Komori, T., Asai, K., & Kin, T. (2007). miRRim: A novel system to find conserved miRNAs with high sensitivity and specificity. RNA, 13, 2081–2090.CrossRefGoogle Scholar
  31. 31.
    Oulas, A., Boutla, A., Gkirtzou, K., Reczko, M., Kalantidis, K., et al. (2009). Prediction of novel microRNA genes in cancer-associated genomic regions: A combined computational and experimental approach. Nucleic Acids Research, 37, 3276–3287.CrossRefGoogle Scholar
  32. 32.
    Friedlander, M. R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., et al. (2008). Discovering microRNAs from deep sequencing data using miRDeep. Nature Biotechnology, 26, 407–415.CrossRefGoogle Scholar
  33. 33.
    Kapranov, P., Cheng, J., Dike, S., Nix, D. A., Duttagupta, R., et al. (2007). RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316, 1484–1488.CrossRefGoogle Scholar
  34. 34.
    Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 129, 1401–1414.CrossRefGoogle Scholar
  35. 35.
    Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., et al. (2002). Identification of tissue-specific microRNAs from mouse. Current Biology, 12, 735–739.CrossRefGoogle Scholar
  36. 36.
    Boffelli, D., McAuliffe, J., Ovcharenko, D., Lewis, K. D., Ovcharenko, I., et al. (2003). Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science, 299, 1391–1394.CrossRefGoogle Scholar
  37. 37.
    Berezikov, E., Guryev, V., van de Belt, J., Wienholds, E., Plasterk, R. H., et al. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell, 120, 21–24.CrossRefGoogle Scholar
  38. 38.
    Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B., & Bartel, D. P. (2003). Vertebrate microRNA genes. Science, 299, 1540.CrossRefGoogle Scholar
  39. 39.
    Artzi, S., Kiezun, A., & Shomron, N. (2008). miRNAminer: A tool for homologous microRNA gene search. BMC Bioinformatics, 9, 39.CrossRefGoogle Scholar
  40. 40.
    Sunkar, R., & Jagadeeswaran, G. (2008). In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biology, 8, 37.CrossRefGoogle Scholar
  41. 41.
    Kent, W. J. (2002). BLAT: The BLAST-like alignment tool. Genome Research, 12, 656–664.Google Scholar
  42. 42.
    Lambert, A., Fontaine, J. F., Legendre, M., Leclerc, F., Permal, E., et al. (2004). The ERPIN server: An interface to profile-based RNA motif identification. Nucleic Acids Research, 32, W160–W165.CrossRefGoogle Scholar
  43. 43.
    Washietl, S., Hofacker, I. L., & Stadler, P. F. (2005). Fast and reliable prediction of noncoding RNAs. Proceedings of the National Academy of Sciences of the United States of America, 102, 2454–2459.CrossRefGoogle Scholar
  44. 44.
    Hofacker, I. L. (2003). Vienna RNA secondary structure server. Nucleic Acids Research, 31, 3429–3431.CrossRefGoogle Scholar
  45. 45.
    Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Research, 65, 7065–7070.CrossRefGoogle Scholar
  46. 46.
    Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America, 103, 2257–2261.CrossRefGoogle Scholar
  47. 47.
    Eis, P. S., Tam, W., Sun, L., Chadburn, A., Li, Z., et al. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proceedings of the National Academy of Sciences of the United States of America, 102, 3627–3632.CrossRefGoogle Scholar
  48. 48.
    Kluiver, J., Haralambieva, E., de Jong, D., Blokzijl, T., Jacobs, S., et al. (2006). Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer, 45, 147–153.CrossRefGoogle Scholar
  49. 49.
    Kluiver, J., Poppema, S., de Jong, D., Blokzijl, T., Harms, G., et al. (2005). BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. Journal of Pathology, 207, 243–249.CrossRefGoogle Scholar
  50. 50.
    Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 9, 189–198.CrossRefGoogle Scholar
  51. 51.
    He, H., Jazdzewski, K., Li, W., Liyanarachchi, S., Nagy, R., et al. (2005). The role of microRNA genes in papillary thyroid carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 102, 19075–19080.CrossRefGoogle Scholar
  52. 52.
    Ciafre, S. A., Galardi, S., Mangiola, A., Ferracin, M., Liu, C. G., et al. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochemical and Biophysical Research Communications, 334, 1351–1358.CrossRefGoogle Scholar
  53. 53.
    Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., & Tuschl, T. (2003). New microRNAs from mouse and human. RNA, 9, 175–179.CrossRefGoogle Scholar
  54. 54.
    Cai, X., Lu, S., Zhang, Z., Gonzalez, C. M., Damania, B., et al. (2005). Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proceedings of the National Academy of Sciences of the United States of America, 102, 5570–5575.CrossRefGoogle Scholar
  55. 55.
    Reeder, J., & Giegerich, R. (2004). Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics, 5, 104–115.CrossRefGoogle Scholar
  56. 56.
    Ruby, J. G., Jan, C. H., & Bartel, D. P. (2007). Intronic microRNA precursors that bypass Drosha processing. Nature, 448, 83–86.CrossRefGoogle Scholar
  57. 57.
    Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102, 13944–13949.CrossRefGoogle Scholar
  58. 58.
    Lim, L. P., Lau, N. C., Weinstein, E. G., Abdelhakim, A., & Yekta, S. (2003). The microRNAs of Caenorhabditis elegans. Genes and Development, 17, 991–1008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Anastasis Oulas
    • 1
  • Nestoras Karathanasis
    • 1
    • 2
  • Annita Louloupi
    • 2
  • Panayiota Poirazi
    • 1
    Email author
  1. 1.Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH)Heraklion, CreteGreece
  2. 2.University of CreteHeraklion, CreteGreece

Personalised recommendations