Advertisement

Molecular Biotechnology

, Volume 49, Issue 3, pp 257–262 | Cite as

Allelic Polymorphism Detected in the Bovine FTO Gene

  • Bao Zhang
  • Ya Zhang
  • Liangzhi Zhang
  • Jing Wang
  • Zhuanjian Li
  • Hong Chen
Research

Abstract

Studies in humans have independently identified single nucleotide polymorphisms (SNPs) in the fat mass and obesity associated (FTO) gene associated with obesity in multiple populations. It was shown that FTO participated in the regulation of energy homeostasis and associated with increased lipolytic activity in adipocytes. To ascertain whether there were mutations in the bovine FTO gene, this study investigated the variation of the FTO gene through PCR-SSCP and sequencing. Five synonymous mutations, two missense mutations, and three intronic SNPs were identified in 614 cattle from five independent populations. Haplotype frequencies and linkage disequilibrium (LD) coefficients of these SNPs in three Chinese indigenous cattle breeds were analyzed. Two LD blocks were found in the Qinchuan and Nanyang cattle breeds and three LD blocks were found in the Jiaxian cattle breed, suggesting the possibility of a recombination hotspot between exon 5 and intron 5 of the bovine FTO gene. The variations detected here might have an impact on the FTO gene activity and function.

Keywords

Cattle FTO gene SNP (single nucleotide polymorphism) PCR-SSCP 

Notes

Acknowledgments

The authors are grateful to Wen Huang and Yi Wang, University of Wisconsin-Madison, for their useful suggestions. This study was supported by the National 863 Program of China (No. 2008AA101010), National Natural Science Foundation of China (No. 30972080), National Key Technology R&D Program (No. 2008BADB2B03-19), Keystone Project of transfer gene in China (2009ZX08009-157B, 2008ZX08007-002, 2009ZX08007-005B-07), Program of National Beef Cattle Industrial Technology System (Nycytx-38), Basic and Foreland Technology Study Program of Henan Province (No. 072300430160).

References

  1. 1.
    Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren, C. M., et al. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316, 889–894.CrossRefGoogle Scholar
  2. 2.
    Andreasen, C. H., Stender-Petersen, K. L., Mogensen, M. S., Torekov, S. S., Wegner, L., Andersen, G., et al. (2008). Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes, 57, 95–101.CrossRefGoogle Scholar
  3. 3.
    Dina, C., Meyre, D., Gallina, S., Durand, E., Korner, A., Jacobson, P., et al. (2007). Variation in FTO contributes to childhood obesity and severe adult obesity. Nature Genetics, 39, 724–726.CrossRefGoogle Scholar
  4. 4.
    Field, S. F., Howson, J. M. M., Walker, N. M., Dunger, D. B., & Todd, J. A. (2007). Analysis of the obesity gene FTO in 14, 803 type 1 diabetes cases and controls. Diabetologia, 50, 2218–2220.CrossRefGoogle Scholar
  5. 5.
    Hinney, A., Nguyen, T. T., Scherag, A., Friedel, S., Bronner, G., Muller, T. D., et al. (2007). Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS ONE, 2(12), e1361.CrossRefGoogle Scholar
  6. 6.
    Peeters, A., Beckers, S., Verrijken, A., Roevens, P., Peeters, P., Van Gaal, L., et al. (2008). Variants in the FTO gene are associated with common obesity in the Belgian population. Molecular Genetics and Metabolism, 93, 481–484.CrossRefGoogle Scholar
  7. 7.
    Scuteri, A., Sanna, S., Chen, W.-M., Uda, M., Albai, G., Strait, J., et al. (2007). Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genetics, 3(7), e115.CrossRefGoogle Scholar
  8. 8.
    Wahlen, K., Sjolin, E., & Hoffstedt, J. (2008). The common rs9939609 gene variant of the fat mass and obesity-associated gene FTO is related to fat cell lipolysis. Journal of Lipid Research, 49, 607–611.CrossRefGoogle Scholar
  9. 9.
    Fawcett, K. A., & Barroso, I. (2010). The genetics of obesity: FTO leads the way. Trends in Genetics, 26, 266–274.CrossRefGoogle Scholar
  10. 10.
    Gerken, T., Girard, C. A., Tung, Y. C. L., Webby, C. J., Saudek, V., Hewitson, K. S., et al. (2007). The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science, 318, 1469–1472.CrossRefGoogle Scholar
  11. 11.
    Fredriksson, R., Hagglund, M., Olszewski, P. K., Stephansson, O., Jacobsson, J. A., Olszewska, A. M., et al. (2008). The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology, 149, 2062–2071.CrossRefGoogle Scholar
  12. 12.
    Fischer, J., Koch, L., Emmerling, C., Vierkotten, J., Peters, T., Bruning, J. C., et al. (2009). Inactivation of the FTO gene protects from obesity. Nature, 458, 894–898.CrossRefGoogle Scholar
  13. 13.
    Muller, M.J., Bosy-Westphal, A., & Heymsfield, S.B. (2010). Is there evidence for a set point that regulates human body weight? F1000 medicine reports, 2, 59.Google Scholar
  14. 14.
    Zhang, C., Wang, Y., Chen, H., Lan, X., Lei, C., & Fang, X. (2009). Association between variants in the 5-untranslated region of the bovine MC4R gene and two growth traits in Nanyang cattle. Molecular Biology Reports, 36, 1839–1843.CrossRefGoogle Scholar
  15. 15.
    Onteru, S. K., Fan, B., & Rothschild, M. F. (2008). SNP detection and comparative linkage mapping of 66 bone-related genes in the pig. Cytogenetic and Genome Research, 122, 122–131.CrossRefGoogle Scholar
  16. 16.
    Fontanesi, L., Scotti, E., Buttazzoni, L., Davoli, R., & Russo, V. (2009). The porcine fat mass and obesity associated (FTO) gene is associated with fat deposition in Italian Duroc pigs. Animal Genetics, 40, 90–93.CrossRefGoogle Scholar
  17. 17.
    Fan, B., Du, Z. Q., & Rothschild, M. F. (2009). The fat mass and obesity-associated (FTO) gene is associated with intramuscular fat content and growth rate in the pig. Animal Biotechnology, 20, 58–70.CrossRefGoogle Scholar
  18. 18.
    Gutierrez-Gil, B., Wiener, P., Nute, G. R., Burton, D., Gill, J. L., Wood, J. D., et al. (2008). Detection of quantitative trait loci for meat quality traits in cattle. Animal Genetics, 39, 51–61.CrossRefGoogle Scholar
  19. 19.
    McClure, M. C., Morsci, N. S., Schnabel, R. D., Kim, J. W., Yao, P., Rolf, M. M., et al. (2010). A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Animal Genetics, 41, 597–607.CrossRefGoogle Scholar
  20. 20.
    Casas, E., Shackelford, S. D., Keele, J. W., Koohmaraie, M., Smith, T. P. L., & Stone, R. T. (2003). Detection of quantitative trait loci for growth and carcass composition in cattle. Journal of Animal Science, 81, 2976–2983.Google Scholar
  21. 21.
    Nkrumah, J. D., Sherman, E. L., Li, C., Marques, E., Crews, D. H., Bartusiak, R., et al. (2007). Primary genome scan to identify putative quantitative trait loci for feedlot growth rate, feed intake, and feed efficiency of beef cattle. Journal of Animal Science, 85, 3170–3181.CrossRefGoogle Scholar
  22. 22.
    Müllenbach R, L. P., & Welter, C. (1989). An efficient salt-chloroform extraction of DNA from blood and tissues. Trends in Genetics, 5(12), 391.Google Scholar
  23. 23.
    Zhang, C. L., Wang, Y. H., Chen, H., Lan, X. Y., & Lei, C. Z. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Analytical Biochemistry, 365, 286–287.CrossRefGoogle Scholar
  24. 24.
    Zhang, Q., Chen, H., Zhao, S., Zhang, L., Zhang, L., Li, F., et al. (2009). Single nucleotide polymorphisms and haplotypic diversity in the bovine PRKAB1 gene. Molecular Biotechnology, 43, 193–199.CrossRefGoogle Scholar
  25. 25.
    Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics, 21, 263–265.CrossRefGoogle Scholar
  26. 26.
    Sanchez-Pulido, L., & Andrade-Navarro, M. A. (2007). The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC Biochemistry, 8, 23.CrossRefGoogle Scholar
  27. 27.
    Han, Z. F., Niu, T. H., Chang, J. B., Lei, X. G., Zhao, M. Y., Wang, Q., et al. (2010). Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature, 464, 1205–1209.CrossRefGoogle Scholar
  28. 28.
    Cheong, H. S., Yoon, D. H., Kim, L. H., Park, B. L., Choi, Y. H., Chung, E. R., et al. (2006). Growth hormone-releasing hormone (GHRH) polymorphisms associated with carcass traits of meat in Korean cattle. Bmc Genetics, 7, 35.CrossRefGoogle Scholar
  29. 29.
    Conrad, D. F., Jakobsson, M., Coop, G., Wen, X., Wall, J. D., Rosenberg, N. A., et al. (2006). A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nature Genetics, 38, 1251–1260.CrossRefGoogle Scholar
  30. 30.
    Saunders, M. A., Hammer, M. F., & Nachman, M. W. (2002). Nucleotide variability at G6pd and the signature of malarial selection in humans. Genetics, 162, 1849–1861.Google Scholar
  31. 31.
    Stephens, J. C. (2001). Haplotype variation and linkage disequilibrium in 313 human genes. Science, 293, 489–493.CrossRefGoogle Scholar
  32. 32.
    Nakamoto, K., Wang, S. A., Jenison, R. D., Guo, G. L., Klaassen, C. D., Wan, Y. J. Y., et al. (2006). Linkage disequilibrium blocks, haplotype structure, and htSNPs of human CYP7AI gene. BMC Genetics, 7, 29.CrossRefGoogle Scholar
  33. 33.
    Saunders, M. A., Slatkin, M., Garner, C., Hammer, M. R., & Nachman, M. W. (2005). The extent of linkage disequilibrium caused by selection on G6PD in humans. Genetics, 171, 1219–1229.CrossRefGoogle Scholar
  34. 34.
    Toomajian, C., & Kreitman, M. (2002). Sequence variation and haplotype structure at the human HFE locus. Genetics, 161, 1609–1623.Google Scholar
  35. 35.
    Zhou, M., Lei, M., Rao, Y., Nie, Q., Zeng, H., Xia, M., et al. (2008). Polymorphisms of vasoactive intestinal peptide receptor-1 gene and their genetic effects on broodiness in chickens. Poultry Science, 87, 893–903.CrossRefGoogle Scholar
  36. 36.
    Yamasaki, M., Tenaillon, M. I., Bi, I. V., Schroeder, S. G., Sanchez-Villeda, H., Doebley, J. F., et al. (2005). A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell, 17, 2859–2872.CrossRefGoogle Scholar
  37. 37.
    Kunhareang, S., Zhou, H., & Hickford, J. G. H. (2009). Allelic variation in the porcine MYF5 gene detected by PCR-SSCP. Molecular Biotechnology, 41, 208–212.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Bao Zhang
    • 1
  • Ya Zhang
    • 1
  • Liangzhi Zhang
    • 1
  • Jing Wang
    • 1
  • Zhuanjian Li
    • 1
  • Hong Chen
    • 1
  1. 1.College of Animal Science and TechnologyShaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F UniversityYangling, ShaanxiChina

Personalised recommendations