Molecular Biotechnology

, Volume 49, Issue 3, pp 229–239 | Cite as

Characterization of a New α-l-Arabinofuranosidase from Penicillium sp. LYG 0704, and their Application in Lignocelluloses Degradation

  • Dae-Seok Lee
  • Seung-Gon Wi
  • Yoon-Gyo Lee
  • Eun-Jin Cho
  • Byung-Yeoup Chung
  • Hyeun-Jong Bae


A gene (arf) encoding an α-l-arabinofuranosidase (ARF) that hydrolyzes arabinose substituted on xylan was isolated from Penicillium sp. The gene was predicted to encode 339 amino acid residues showing 71–75% homology to GH family 54. E. coli expressed ARF showed optimal activity at 50°C and pH 5–6 on wheat arabinoxylan. The hydrolysis activities on oat spelt xylan by ARF and xylanase were 1.67-fold higher than that of xylanase alone. The synergistic effects of ARF and commercial enzymes (xylanase and cellulase) on popping-pretreated rice straw were 1.15–1.51-fold higher amounts of sugars released in the [ARF + xylanase + cellulase] mixture than in the mixtures [ARF + xylanase], [ARF + cellulase], and [xylanase + cellulase]. Moreover, the liberation of arabinose by ARF was enhanced 2.1–2.9-fold in a reaction with xylanase and cellulase as compared with [xylanase + cellulase] and ARF alone.


α-l-Arabinofuranosidase Synergistic effect Xylanase Cellulase Lignocelluloses Enzymatic hydrolysis 



This work was supported by Priority Research Centers Program (Project No. 2010-0020141), by National Nuclear R&D Program (2010-0029541), and by World Class University program (R31-2009-000-20025-0) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology of Korea to H.-J. Bae. Y.G. Lee is grateful for the BK21 program provided by the Ministry of Education.

Supplementary material

12033_2011_9396_MOESM1_ESM.tif (3.5 mb)
Supplementary Fig. S1. Determination of the molecular mass of native ARF by gel filtration chromatography. The column was calibrated with standard proteins; aldolase (156 kDa), conalbumin (75 kDa), ovalbumin (43 kDa), and carbonic anhydrase (29 kDa) (closed circles). Native ARF denotes an open circle. (TIFF 3551 kb)


  1. 1.
    Twyman, R. M., Stoger, E., Schillberg, S., Christou, P., & Fischer, R. (2003). Molecular farming in plants: host systems and expression technology. Trends in Biotechnology, 21, 570–578.CrossRefGoogle Scholar
  2. 2.
    Bae, H. J., Lee, D. S., & Hwang, I. (2006). Dual targeting of xylanase to chloroplasts and peroxisomes as a means to increase protein accumulation in plant cells. Journal of Experimental Botany, 57(1), 161–169.Google Scholar
  3. 3.
    Hood, E. E., Love, R., Jeff, B., Clough, R., Pappu, K., Drees, C., et al. (2007). Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnology Journal, 5, 709–719.CrossRefGoogle Scholar
  4. 4.
    Kim, S., Lee, D. S., Choi, I. S., Ahn, S. J., Kim, Y. H., & Bae, H. J. (2010). Arabidopsis thaliana Rubisco small subunit transit peptide increases the accumulation of Thermotoga maritime endoglucanase Cel5A in chloroplasts of transgenic tobacco plants. Transgenic Research, 19, 489–497.CrossRefGoogle Scholar
  5. 5.
    Jung, S., Kim, S., Bae, H., Lim, H., & Bae, H.-J. (2010). Expression of thermostable bacteria β-glucosidase (BglB) in transgenic tobacco plants. Bioresource Technology, 101(18), 7144–7150.CrossRefGoogle Scholar
  6. 6.
    Verma, D., Kanagaraj, A., Jin, S., Singh, N. D., Kolattukudy, P. E., & Daniell, H. (2010). Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnology Journal, 8, 1–19.CrossRefGoogle Scholar
  7. 7.
    Zhang, S., Irwin, D. C., & Wilson, D. B. (2000). Site-directed mutation of noncatalytic residues of Thermobifida fusca exocellulase Cel6B. European Journal of Biochemistry, 267, 3101–3115.CrossRefGoogle Scholar
  8. 8.
    Heinzelmana, P., Snowa, C. D., Wua, I., Nguyena, C., Villalobosb, A., Govindarajanb, S., et al. (2009). A family of thermostable fungal cellulases created by structure-guided recombination. Proceedings of Natural Academic Science of the United States of America, 106(14), 5610–5615.CrossRefGoogle Scholar
  9. 9.
    Irwin, D. C., Spezio, M., Walker, L. P., & Wilson, D. B. (1993). Activity studies of eight purified cellulase: Specificity, synergism, and binding domain effects. Biotechnology and Bioengineering, 42, 1002–1013.CrossRefGoogle Scholar
  10. 10.
    Murashima, K., Kosugi, A., & Doi, R. H. (2003). Synergistic effects of cellulosomal xylanase and cellulase from Clostridium cellulovorans on plant cell wall degradation. Journal of Bacteriology, 185(5), 1518–1524.CrossRefGoogle Scholar
  11. 11.
    Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology & Biotechnology, 30, 279–291.CrossRefGoogle Scholar
  12. 12.
    Adelsberger, H., Hertel, C., Glawischnig, E., Zverlov, V. V., & Schwarz, W. H. (2004). Enzyme system of Clostridium stercorarium for hydrolysis of arabinoxylan: reconstitution of the in vivo system from recombinant enzymes. Microbiology, 150, 2257–2266.CrossRefGoogle Scholar
  13. 13.
    Fan, Z., Werkman, J. R., & Yuan, L. (2009). Engineering of a multifunctional hemicellulase. Biotechnological Letters, 31, 751–757.CrossRefGoogle Scholar
  14. 14.
    Lee, Y. G., Chung, K. C., Wi, S. G., Lee, J. C., & Bae, H. J. (2009). Purification, properties of a chitinase from Penicillium sp. LYG 0704. Protein Expression and Purification, 65, 244–250.CrossRefGoogle Scholar
  15. 15.
    Bae, H. J. (2007). Processes for the pretreatment of lignocellulosic biomasses by popping method, and processes for the production of saccharides and bio-ethanol using the same. Korean patent No. 10-2007-0102493.Google Scholar
  16. 16.
    Choi, I. S., Wi, S. G., Jung, S. R., Patel, D. H., & Bae, H. J. (2009). Characterization and application of recombinant β-glucosidase (BgIH) from Bacillus licheniformis KCTC 1918. Journal of Wood Science, 55, 329–334.CrossRefGoogle Scholar
  17. 17.
    Miyanaga, A., Koseki, T., Matsuzawa, H., Wakagi, T., Shoun, H., & Fushinobu, S. (2004). Crystal structure of a family 54 α-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. Journal of Biological Chemistry, 279, 44907–44914.CrossRefGoogle Scholar
  18. 18.
    Tsujibo, H., Takada, C., Wakamatsu, Y., Kosaka, M., Tsuji, A., Miyamoto, K., et al. (2002). Cloning and expression of an α-L-arabinofuranosidase gene (stxIV) from Streptomyces thermoviloaceus OPC-520, and characterization of the enzyme. Bioscience, Biotechnology, and Biochemistry, 66(2), 434–438.CrossRefGoogle Scholar
  19. 19.
    Kimura, I., Yoshioka, N., Kimura, Y., & Tajima, S. (2000). Cloning, sequencing and expression of an α-L-arabinofuranosidase from Aspergillus sojae. Journal of Bioscience and Bioengineering, 89, 262–266.CrossRefGoogle Scholar
  20. 20.
    Saha, B. C., & Bothast, R. J. (1998). Purification and characterization of a novel thermostable α-L-arabinofuranosidase from a color-variant strain of Aureobasidium pullulans. Applied and Environmental Microbiology, 64, 216–220.Google Scholar
  21. 21.
    Panagiotou, G., Topakas, E., Economou, L., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Induction, purification, and characterization of two extracellular α-L-arabinofuranosidase from Fusarium oxysporum. Canadian Journal of Microbiology, 49, 639–644.CrossRefGoogle Scholar
  22. 22.
    Renner, M., & Breznak, J. A. (1998). Purification and properties of ArfI, an α-L-arabinofuranosidase from Cytophaga xylanolytica. Applied and Environmental Microbiology, 64, 43–52.Google Scholar
  23. 23.
    Hespell, R. B., & O’Bryan, P. J. (1992). Purification and characterization of an α-L-arabinofuranosidase from Butyrivibrio fibrisolvens GS113. Applied and Environmental Microbiology, 58, 1082–1088.Google Scholar
  24. 24.
    de Barend, J. M. W., Matthew, M. K. A., Storbeck, K. H., Zyl, W. H. V., & Prior, B. A. (2008). Characterization of a family 54 α-L-arabinofuranosidase from Aureobasidium pullulans. Applied Microbiology and Biotechnology, 77, 975–983.CrossRefGoogle Scholar
  25. 25.
    Van Laere, K. M. J., Beldman, G., & Voragen, A. G. J. (1997). A new arabinofuranohydrolase from Bifidobacterium adolescentis able to remove arabinosyl residues from double-substituted xylose units in arabinoxylan. Applied Microbiology and Biotechnology, 47, 231–235.CrossRefGoogle Scholar
  26. 26.
    Tuncer, M., & Ballb, A. S. (2003). Co-operative action and degradation analysis of purified xylan-degrading enzymes from Thermomonospora fusca BD25 on oat-spelt xylan. Journal of Applied Microbiology, 94, 1030–1035.CrossRefGoogle Scholar
  27. 27.
    Kaneko, S., Ishii, T., Kobayashi, H., & Kusakabe, I. (1998). Substrate specificities of α-L-arabinofuranosidase produced by two species of Aspergillus niger. Bioscience, Biotechnology, and Biochemistry, 62, 695–699.CrossRefGoogle Scholar
  28. 28.
    Kaneko, S., Arimoto, M., Ohba, M., Kobayashi, H., Ishii, T., & Kusakabe, I. (1998). Purification and substrate specificities of two α-L-arabinofuranosidases from Aspergillus awamori IFO 4033. Applied and Environmental Microbiology, 64, 4021–4027.Google Scholar
  29. 29.
    Kaneko, S., Kuno, A., Matsuo, N., Ishii, T., Kobayashi, H., Hayahi, K., et al. (1998). Substrate specificities of the α-L-arabinofuranosidase from Trichoderma reesei. Bioscience, Biotechnology, and Biochemistry, 62, 2205–2210.CrossRefGoogle Scholar
  30. 30.
    Van Laere, K. M. J., Voragen, C. H. L., Kroef, T., Van den Broek, L. A. M., Beldman, G., & Voragen Puri, A. G. J. (1999). Purification and mode of action of two different arabinoxylan arabinofuranohydrolases from Bifidobacterium adolescentis DSM 20083. Applied Microbiology and Biotechnology, 51, 606–613.CrossRefGoogle Scholar
  31. 31.
    McCartney, L., Blake, A. W., Flint, J., Bolam, D. N., Boraston, A. B., Gilbert, H. J., et al. (2006). Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proceedings of Natural Academic Science of the United States of America, 103, 4765–4770.CrossRefGoogle Scholar
  32. 32.
    Kormelink, F. J. M., Hoffmann, R. A., Gruppen, H., Voragen, A. G. J., Kamerling, J. P., & Vliegenthart, J. F. G. (1993). Characterisation by 1H NMR spectroscopy of oligosaccharides derived from alkali-extractable wheat-flour arabinoxylan by digestion with endo-(1- > 4)-β-D-xylanase III from Aspergillus awamori. Carbohydrate Research, 249, 369–382.CrossRefGoogle Scholar
  33. 33.
    Vincent, P., Shareck, F., Dupont, C., Morosoli, R., & Kluepfel, D. (1997). New α-L-arabinofuranosidase produced by Streptomyces lividans: cloning and DNA sequence of the abfB gene and characterization of the enzyme. Biochemical Journal, 322, 845–852.Google Scholar
  34. 34.
    Binod, P., Sindhu, R., Sinhania, R. R., Vikram, S., Devi, L., Nagalakchmi, S., et al. (2010). Bioethanol production from rice straw: An overview. Bioresource Technology, 101(13), 4767–4774.CrossRefGoogle Scholar
  35. 35.
    Sharma, U., Brillouet, J. M., Scalbert, A., & Monties, B. (1986). Studies on a brittle stem mutant of rice, Oryza sativa L.; characterization of lignin fractions, associated phenolic acids and polysaccharides from rice stem. Agronomic., 6(3), 265–271.CrossRefGoogle Scholar
  36. 36.
    Luonteri, E., Beldman, G., & Tenkanen, M. (1998). Substrate specificities of Aspergillus terreus α-arabinofuranosidases. Carbohydrate Polymers, 37, 131–141.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dae-Seok Lee
    • 1
    • 2
  • Seung-Gon Wi
    • 1
  • Yoon-Gyo Lee
    • 2
  • Eun-Jin Cho
    • 1
  • Byung-Yeoup Chung
    • 3
  • Hyeun-Jong Bae
    • 1
    • 2
    • 4
  1. 1.Bio-energy Research InstituteChonnam National UniversityGwangjuRepublic of Korea
  2. 2.Department of Forest Products and Technology (BK21 Program)Chonnam National UniversityGwangjuRepublic of Korea
  3. 3.Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeupRepublic of Korea
  4. 4.Department of Bioenergy Science and TechnologyChonnam National UniversityGwangjuRepublic of Korea

Personalised recommendations