Molecular Biotechnology

, Volume 48, Issue 3, pp 244–254 | Cite as

Clones Identification and Genetic Characterization of Garnacha Grapevine by Means of Different PCR-Derived Marker Systems

  • Stefano MeneghettiEmail author
  • Angelo Costacurta
  • Enrica Frare
  • Graziana Da Rold
  • Daniele Migliaro
  • Giacomo Morreale
  • Manna Crespan
  • Vicente Sotés
  • Antonio Calò


This study uses PCR-derived marker systems to investigate the extent and distribution of genetic variability of 53 Garnacha accessions coming from Italy, France and Spain. The samples studied include 28 Italian accessions (named Tocai rosso in Vicenza area; Alicante in Sicily and Elba island; Gamay perugino in Perugia province; Cannonau in Sardinia), 19 Spanish accessions of different types (named Garnacha tinta, Garnacha blanca, Garnacha peluda, Garnacha roja, Garnacha erguida, Garnacha roya) and 6 French accessions (named Grenache and Grenache noir). In order to verify the varietal identity of the samples, analyses based on 14 simple sequence repeat (SSR) loci were performed. The presence of an additional allele at ISV3 locus (151 bp) was found in four Tocai rosso accessions and in a Sardinian Cannonau clone, that are, incidentally, chimeras. In addition to microsatellite analysis, intravarietal variability study was performed using AFLP, SAMPL and M-AFLP molecular markers. AFLPs could discriminate among several Garnacha samples; SAMPLs allowed distinguishing few genotypes on the basis of their geographic origin, whereas M-AFLPs revealed plant-specific markers, differentiating all accessions. Italian samples showed the greatest variability among themselves, especially on the basis of their different provenance, while Spanish samples were the most similar, in spite of their morphological diversity.


Cannonau Grenache AFLP M-AFLP SAMPL Intravarietal variability 



Authors thank Franco E., Lorente M., Nuñez R. for providing Spanish Garnacha clones.


  1. 1.
    Galet, P. (2000). Dictionnaire encyclopédique des cépages. Paris: Hachette.Google Scholar
  2. 2.
    Herrera, A. (1513). Agricultura General. 1ª edición, Ed. Madrid, 1645. Madrid.Google Scholar
  3. 3.
    Robinson, J. (2006). The Oxford companion to wine (3rd ed.). NY, USA: Oxford University Press.Google Scholar
  4. 4.
    Calò, A., & Costacurta, A. (2004). Dei vitigni italici. Treviso, Italy: Ed. Matteo.Google Scholar
  5. 5.
    Odart, G. (1874). Traité de cépages. Paris: Librairie agricole.Google Scholar
  6. 6.
    Clarke, O. (2001). Encyclopedia of grapes (pp. 91–100). Orlando: Harcourt Books.Google Scholar
  7. 7.
    Gregutt, P. (2007). Washington wines and wineries: The essential guide (pp. 67–68). Berkeley, CA: University of California Press.Google Scholar
  8. 8.
    Galet, P. (1979). A practical ampelography: Grapevine identification. Ithaca, New York: University Press.Google Scholar
  9. 9.
    Levadoux, L. (1956). Les populations sauvages et cultivees de Vitis vinifera L. Ann. Amelior Plantes, 6, 59–118.Google Scholar
  10. 10.
    Costacurta, A., & Meneghetti, S. (2008). Evaluation of the intra-varietal variability for the clones identification (I). OIV Oral communication N. CI-GENET 03.2008.05.2. Organisation internationale de la vigne et du vin - Section Experts en Génétique, Paris, le 13 mars 2008.Google Scholar
  11. 11.
    Meneghetti, S., Costacurta, A., & Calò, A. (2009). Evaluation of the intra-varietal variability for the clones identification (II). OIV Oral communication N. CI-GENET 03.2009-07.1., Organisation internationale de la vigne et du vin - Section Experts en Génétique, Paris, le 18 mars 2009.Google Scholar
  12. 12.
    Wolf, W. H. (1976). Identification of grape varieties by isozyme banding patterns. American Journal of Enology and Viticulture, 27-2, 68–73.Google Scholar
  13. 13.
    Schwennesen, J., Mielke, E. A., & Wolfe, W. H. (1982). Identification of seedless table grape cultivars and a bud sport with berry isozymes. Hortscience, 17–3, 366–368.Google Scholar
  14. 14.
    Loukas, M., Stavrakakis, M. N., & Krimbas, C. B. (1983). Inheritance of polymorphic isoenzymes in grape cultivars. The Journal of Heredity, 74–3, 181–183.Google Scholar
  15. 15.
    Stavrakakis, M., & Loukas, M. (1983). The between and within grape cultivars genetic variation. Scientia Horticulturae, 19, 321–334.CrossRefGoogle Scholar
  16. 16.
    Altube, H., Cabello, F., & Ortiz, J. M. (1991). Caracterización de variedades y portainjertos de vid mediante isoenzimas de los sarmientos. Vitis, 30, 203–212.Google Scholar
  17. 17.
    Chaparro, J. X., Goldy, R. G., Mowrey, B. D., & Werner, D. J. (1989). Identification of Vitis vinifera × Muscardinia rotundifolia small hybrids by starch gel electrophoresis. Hortscience, 24, 128–130.Google Scholar
  18. 18.
    Royo, J. B., Cabello, F., Miranda, S., Gogorcena, Y., González, J., Moreno, S., et al. (1997). The use of isoenzymes in characterization of grapevines (Vitis vinifera L.). Influence of the environment and time of sampling. Scientia Horticulturae, 69, 145–155.CrossRefGoogle Scholar
  19. 19.
    Bachmann, K. (1994). Molecular markers in plant ecology. New Phytologist, 126, 403–418.CrossRefGoogle Scholar
  20. 20.
    Bachmann, O., & Blaich, R. (1988). Isoeletric focusing of grapevine peroxidases as a tool for ampelography. Vitis, 27, 147–155.Google Scholar
  21. 21.
    de Martínez Toda, F., & Sancha, J. C. (1997). Ampelographical characterization of red Vitis vinifera L. cultivars preserved in Rioja. Bull de l’OIV, 70, 220–234.Google Scholar
  22. 22.
    Techera, G., Jubany, A., de Ponce León, S., Boido, I., Dellacassa, E., Carrau, E., et al. (2004). Molecular diversity (SSR) within clones of cv. Tannat (Vitis vinifera). Vitis, 43–44, 179–185.Google Scholar
  23. 23.
    Regner, F., Wiedeck, E., & Stadlbauer, A. (2000). Differentiation and identification of White Riesling clones by genetic markers. Vitis, 39–3, 103–107.Google Scholar
  24. 24.
    Moreno, S., Gogorcena, Y., & Ortiz, J. M. (1995). The use of RAPD markers for identification of cultivated grapevine (Vitis vinifera L.). Scientia Horticulturae, 62–4, 237–243.CrossRefGoogle Scholar
  25. 25.
    Böhm, A., & Zyprian, E. (1998). RAPD marker in grapevine (Vitis spp.) similar to plant retrotransposons. Plant Cell Reports, 17–5, 415–421.Google Scholar
  26. 26.
    Cervera, M. T., Cabezas, J. A., Sancha, J. C., de Martínez Toda, F., & Martínez-Zapater, J. M. (1998). Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic resources. A case of study with accessions from Rioja. Theoretical and Applied Genetics, 97–1(2), 51–59.CrossRefGoogle Scholar
  27. 27.
    Fanizza, G., Chaabane, R., Ricciardi, L., & Resta, P. (2003). Analysis of a spontaneous mutant and selected clones of cv. Italia (Vitis vinifera) by AFLP markers. Vitis, 42–1, 27–30.Google Scholar
  28. 28.
    Blaich, R., Konradi, J., Rühl, E., & Forneck, A. (2007). Assessing genetic variation among Pinot noir (Vitis vinifera L.) clones with AFLP markers. American Journal of Enology and Viticulture, 58–4, 526–529.Google Scholar
  29. 29.
    Wolf, T., Cabezas, J. A., & Martínez-Zapater, J. M. (2003). Genetic characterization of closely related rootstocks varieties based on AFLP and SAMPL markers. Acta Horticulturae, 603, 291–300.Google Scholar
  30. 30.
    Owens, C. L. (2003). SNP detection and genotyping in Vitis. Acta Horticulturae, 603, 139–140.Google Scholar
  31. 31.
    Labra, M., Imazio, S., Grassi, F., Rossoni, M., & Sala, F. (2004). Vine-1 retrotransposon-based sequence-specific amplified polymorphism for Vitis vinifera L. genotyping. Plant Breeding, 123–2, 180–185.CrossRefGoogle Scholar
  32. 32.
    Imazio, S., Labra, M., Grassi, F., Winfield, M., Bardini, M., & Scienza, A. (2002). Molecular tools (SSR, AFLP, MSAP) for clone identification: The case of the grapevine cultivar ‘Traminer’. Plant Breeding, 121–6, 531–535.CrossRefGoogle Scholar
  33. 33.
    Pelsey, F., Schehrer, L., & Merdinoglu, D. (2002). Development of grapevine molecular markers based on retrotransposons. Acta Horticulturae, 603, 83–87.Google Scholar
  34. 34.
    D’ Onofrio, C., De Lorenzis, G., Giordani, T., Natali, L., Scalabrelli, G., & Cavallini, A. (2009). Retrotransposon-based molecular markers in grapevine species and cultivars identification and phylogenetic analysis. Acta Horticulturae (ISHS), 827, 45–52.Google Scholar
  35. 35.
    Arroyo-García, R., Ruiz-García, L., Bolling, L., Ocete, R., López, M. A., Arnold, C., et al. (2006). Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Molecular Ecology, 15–12, 3707–3714.CrossRefGoogle Scholar
  36. 36.
    Albertini, E., Porceddu, A., Marconi, G., Barcaccia, G., Pallottini, L., & Falcinelli, M. (2003). Microsatellite-AFLP for genetic mapping of complex polyploids. Genome, 46, 824–832.CrossRefGoogle Scholar
  37. 37.
    Calò, A., Costacurta, A., Cancellier, S., & Forti, R. (1990). Garnacha, Grenache, Cannonao, Tocai rosso, un unico vitigno. Vignevini, 9, 45–48.Google Scholar
  38. 38.
    Meneghetti, S., Costacurta, A., Calò, A., Sotés, V., Giannetto, S., & Crespan, M. (2006). Investigation on Italian, Spanish and French Garnacha tinta genetic variability—a preliminary study. Oral communication at the XXIX OIV 2006 International Symposium, Logroño, 25–30 Junio, España.Google Scholar
  39. 39.
    Cretazzo, E., Meneghetti, S., De Andrés, M. T., Frare, E., Gaforio, L., & Cifre, J. (2010). Clone differentiation and varietal identification by means of SSR, AFLP, SAMPL and M-AFLP in order to assist the clonal selection of grapevine. The case of study of manto Negro, callet and Moll, authochthoous cultivar of Majorca. Annals of Applied Biology (Annali of Applied Biology), 157(2), 213–227.CrossRefGoogle Scholar
  40. 40.
    Meneghetti, S., Costacurta, A., Crespan, M., Maul, E., Hack, R., & Regner, F. (2009). Deepening inside the homonyms of Wildbacher by means of SSR markers. Vitis, 48–3, 123–129.Google Scholar
  41. 41.
    Crespan, M. (2004). Evidence on the evolution of polymorphism of microsatellite markers in varieties of Vitis vinifera L. Theoretical and Applied Genetics, 108, 231–237.CrossRefGoogle Scholar
  42. 42.
    Crespan, M. (2003). The parentage of Muscat of Hamburg. Vitis, 42(4), 193–197.Google Scholar
  43. 43.
    Bowers, J. E., Dangl, G. S., & Meredith, C. P. (1999). Development and characterization of additional microsatellite DNA markers for grape. American Journal of Enology and Viticulture, 53, 125–130.Google Scholar
  44. 44.
    Crespan, M., Cancellier, S., Chies, R., Giannetto, S., & Meneghetti, S. (2006). New hypothesis on Raboso veronese origin after its parents identification. Rivista di Viticulture e Enologia, 1, 3–12.Google Scholar
  45. 45.
    Barcaccia, G., Mazzuccato, A., Albertini, E., Zethof, J., Gerats, A., Pezzotti, M., et al. (1998). Inheritance of parthenogenesis in Poa pratensis L.: Auxin test and AFLP linkage analyses support monogenic control. Theoretical and Applied Genetics, 96, 74–82.CrossRefGoogle Scholar
  46. 46.
    Meneghetti, S., Barcaccia, G., Paiero, P., & Lucchin, M. (2007). Genetic characterization of Salix alba L. and Salix fragilis L. by means of different PCR-derived marker systems. Plant Biosystems, 141–3, 283–291.Google Scholar
  47. 47.
    Barcaccia, G., Meneghetti, S., Albertini, E., Triest, L., & Lucchin, M. (2003). Linkage mapping in tetraploid willows: Segregation of molecular markers and estimation of linkage phases support an allotetraploid structure for Salix alba × Salix fragilis interspecifc hybrids. Heredity, 90, 169–180.CrossRefGoogle Scholar
  48. 48.
    Van Eijk, M., De Ruiter, M., Broekhof, J., & Peleman, J. (2001). Discovery and detection of polymorphic microsatellites by microsatellite-AFLP. In Plant and animal genome IX conference, 143.Google Scholar
  49. 49.
    Dice, L. R. (1945). Measures of the amount of ecological association between species. Ecology, 26, 297–302.CrossRefGoogle Scholar
  50. 50.
    Rohlf, F. J. (2000). Numerical taxonomy and multivariate analysis system. Version 2.1. Stony Brook, NY: State University of New York.Google Scholar
  51. 51.
    Powell, W., Machray, G. C., & Provan, J. (1996). Polymorphism revealed by simple sequence repeats. Trends in plant Science, 1, 215–222.Google Scholar
  52. 52.
    Franks, T., Botta, R., & Thomas, M. R. (2002). Chimerism in grapevines: Implications for cultivar identity, ancestry and genetic improvement. Theoretical and Applied Genetics, 104, 192–199.CrossRefGoogle Scholar
  53. 53.
    de Martínez Toda, F., & Sancha, J. C. (1997). Diferenciacion de cultivares de vid (Vitis vinifera) conocidas como Graciano en Rioja mediante técnicas de taxonomía numérica. Viticultura y Enología Profesional, 49, 24–28.Google Scholar
  54. 54.
    Riaz, S., Garrison, K. E., Dangl, G. S., Boursiquot, J. M., & Meredith, C. (2002). Genetic divergence and chimerism within ancient asexually propagated winegrape cultivars. Journal of the American Society for Horticultural Science, 127, 508–514.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Stefano Meneghetti
    • 1
    Email author
  • Angelo Costacurta
    • 1
  • Enrica Frare
    • 1
  • Graziana Da Rold
    • 1
  • Daniele Migliaro
    • 1
  • Giacomo Morreale
    • 1
  • Manna Crespan
    • 1
  • Vicente Sotés
    • 2
  • Antonio Calò
    • 1
  1. 1.C.R.A.-VIT Consiglio per la ricerca e la sperimentazione in agricolturaCentro di ricerca per la viticolturaConegliano (TV)Italy
  2. 2.Universidad Politécnica de Madrid. ETSI Agrónomos, Ciudad UniversitariaMadridSpain

Personalised recommendations