Molecular Biotechnology

, Volume 47, Issue 3, pp 234–242

Evidence of the Involvement of Asparagine Deamidation in the Formation of Cyclodextrin Glycosyltransferase Isoforms in Paenibacillus sp. RB01

  • Wanchai Yenpetch
  • Kanoktip Packdibamrung
  • Wolfgang Zimmermann
  • Piamsook Pongsawasdi
Research

Abstract

Cyclodextrin glycosyltransferase (CGTase) from Paenibacillus sp. RB01 and its recombinant enzyme exhibit three isoforms (I, II, and III) with the same apparent size but different charge. Here, we demonstrate for the first time that the deamidation of labile Asns causes the change in molecular forms of CGTase. The faster increase in number of isoforms was observed upon incubation in deamidation buffer at the more alkaline pH. The increase in levels of isoform II and III over time correlated with the increase in isoaspartate, a unique deamidation product. The predicted labile Asns were individually mutated to Asp, then the selected mutant and wild type isoforms were tryptic digested and labile Asns were investigated by MALDI-TOF. From the results, Asn427 was the most susceptible residue for deamidation, followed by Asn336, Asn415, and Asn567. In addition, Gln389 might also share a role. The advantage of using appropriate CGTase isoform in cyclodextrin production is reported.

Keywords

Paenibacillus sp. RB01 Cyclodextrin glycosyltransferase Deamidation Isoform formation Isoaspartate 

Abbreviations

CGTase

Cyclodextrin glycosyltransferase

CD

Cyclodextrins

A11

Paenibacillus sp. A11

RB01

Paenibacillus sp. RB01

CD value

Coefficient of deamidation

isoAsp

Isoaspartate

N/Asn

Asparagine

D/Asp

Aspartic acid

References

  1. 1.
    van der Veen, A. B., van Alebeek, G. J. W. M., Uitdehaag, J. C. M., Dijkstra, B. W., & Dijkhuizen, L. (2000). The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms. European Journal of Biochemistry, 267, 658–665.CrossRefGoogle Scholar
  2. 2.
    Qi, Q., & Zimmermann, W. (2005). Cyclodextrin glucanotransferase: From gene to applications. Applied Microbiology and Biotechnology, 66, 475–485.CrossRefGoogle Scholar
  3. 3.
    Wang, F., Du, C. G., Li, Y., & Chen, J. (2004). Optimization of cultivation conditions for the production of γ-cyclodextrin glucanotransferase by Bacillus macorous. Food Biotechnology, 18, 251–264.CrossRefGoogle Scholar
  4. 4.
    Hashimoto, H. (2002). Present status of industrial application of cyclodextrins in Japan. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 44, 57–62.CrossRefGoogle Scholar
  5. 5.
    Chittiteeranon, P., Soontaros, S., & Pongsawasdi, P. (2007). Preparation and characterization of inclusion complexes containing fixolide, a synthetic musk fragrance and cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 57, 69–71.CrossRefGoogle Scholar
  6. 6.
    [6] Tesana, S. (2001). Cyclodextrin glycosyltransferase from thermotolerant bacteria: screening, optimization, partial purification and characterization. MSc. Thesis, Chulalongkorn University, Bangkok, Thailand.Google Scholar
  7. 7.
    Yenpetch, W., Kaulpiboon, J., Iizuka, M., & Pongsawasdi, P. (2004). Thermostable CGTase from Paenibacillus sp. RB01 and its chemical modification with glucomannan. Proceedings of the 12th International Cyclodextrin Symposium (pp. 107–112). Montpellier, France.Google Scholar
  8. 8.
    Abelyan, V. A., Yamamoto, T., & Afrikyan, E. G. (1994). Isolation and characterization of cyclodextrin glucanotransferase using cyclodextrin polymers and their derivatives. Biochemistry (Moscow), 59, 573–579.Google Scholar
  9. 9.
    Volkova, D. A., Lopatin, S. A., Gracheva, I. M., & Varlamov, V. P. (2001). Preparation of high purity cyclodextrin glucanotransferase from Bacillus sp. 1070. Applied Biochemistry and Microbiology, 37(2), 138–141.CrossRefGoogle Scholar
  10. 10.
    Rojtinnakorn, J., Kim, P., Laloknam, S., Tongsima, A., Kamolsiripichaiporn, S., Limpaseni, T., et al. (2001). Immunoaffinity purification and characterization of cyclodextrin glycosyltransferase from Bacillus circulans A11. Science Asia, 27, 105–112.CrossRefGoogle Scholar
  11. 11.
    Prasong, W. (2002). Structural analysis of cyclodextrin glycosyltransferase isoforms from Paenibacillus sp. A11. MSc Thesis, Chulalongkorn University, Bangkok, Thailand.Google Scholar
  12. 12.
    Robinson, N. E., & Robinson, A. B. (2001). Molecular clocks. Proceedings of the National Academy of Sciences, 98, 944–949.CrossRefGoogle Scholar
  13. 13.
    Robinson, N. E. (2002). Protein deamidation. Proceedings of the National Academy of Sciences, 99, 5283–5288.CrossRefGoogle Scholar
  14. 14.
    Bischoff, R., & Kolbe, H. (1994). Deamidation of asparagine and glutamine residues in proteins and peptides: Structural determinants and analytical methodology. Journal of Chromatography B, 662, 261–278.CrossRefGoogle Scholar
  15. 15.
    Flatmark, T., & Sletten, K. (1968). Multiple forms of cytochrome c in the rat precursor-product relationship between the main component Cy I and the minor components Cy II and Cy III in vivo. Journal of Biological Chemistry, 243, 1623–1629.Google Scholar
  16. 16.
    Robinson, N. E., & Robinson, A. B. (2001). Prediction of protein deamidation rates from primary and three-dimensional structure. Proceedings of the National Academy of Sciences, 98, 4367–4372.CrossRefGoogle Scholar
  17. 17.
    Zomber, G., Reuveny, S., Garti, N., Shafferman, A., & Elhanany, E. (2005). Effects of spontaneous deamidation on cytotoxic activity of the Bacillus anthracis protective antigen. Journal of Biological Chemistry, 280, 39897–39906.CrossRefGoogle Scholar
  18. 18.
    Cox, G. A., Johnson, R. B., Cook, J. A., Wakulchik, M., Johnson, M. G., Villarreal, E. V., et al. (1999). Identification and characterization of human rhinovirus-14 3C protease deamidation isoform. Journal of Biological Chemistry, 274, 13211–13216.CrossRefGoogle Scholar
  19. 19.
    Solstad, T., Carvalho, R. N., Andersen, O. A., Waidelich, D., & Flatmark, T. (2003). Deamidation of labile asparagine residues in the autoregulatory sequence of human phenylalanine hydroxylase structural and functional implications. European Journal of Biochemistry, 270, 929–938.CrossRefGoogle Scholar
  20. 20.
    Goel, A., & Nene, N. S. (1995). Modifications in the phenolphthalein method for spectrophotometric estimation of beta cyclodextrin. Starch/Starke, 47, 399–400.CrossRefGoogle Scholar
  21. 21.
    Ellis, K. J., & Morrison, J. F. (1982). Buffers of constant ionic strength for studying pH-dependent processes. Methods in Enzymology, 87, 405–426.CrossRefGoogle Scholar
  22. 22.
    Bovetto, L. J., Backe, D. P., Villette, J. R., Sicard, P. J., & Bouquelet, S. J.-L. (1992). Cyclomaltodextrin glucanotransferase from Bacillus circulans E192 I : Purification and characterization of the enzyme. Biotechnology and Applied Biochemistry, 15, 48–58.Google Scholar
  23. 23.
    Wind, R. D., Liebl, W., Buitellaar, R. M., Penninga, D., Spreinat, A., Dijkhuizen, L., et al. (1995). Cyclodextrin formation by the thermostable α-amylase of Thermoanaerobacterium thermosulfurigenes EM1 and reclassification of the enzyme as a cyclodextrin glycosyltransferase. Applied and Environmental Microbiology, 61, 1257–1265.Google Scholar
  24. 24.
    Peters, B., & Trout, B. L. (2006). Asparagine deamidation: pH dependence mechanism from density functional theory. Biochemistry, 45, 5384–5392.CrossRefGoogle Scholar
  25. 25.
    Geiger, T., & Clarck, S. (1987). Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides-succinimide-linked reactions that contribute to protein degradation. Journal of Biological Chemistry, 262, 785–794.Google Scholar
  26. 26.
    DeLuna, A., Quezada, H., Gomez-Puyou, A., & Gonzalez, A. (2005). Asparaginyl deamidation in two glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 328, 1083–1090.CrossRefGoogle Scholar
  27. 27.
    Flatmark, T., & Vesterberg, O. (1966). On the heterogeneity of beef heart cytochrome c IV Isoelectric fractionation by electrolysis in a natural pH gradient. Acta Chemica Scandinavica, 20, 1497–1503.CrossRefGoogle Scholar
  28. 28.
    Kaskangam, K. (1998). Isolation and characterization of cyclodextrin glycosyltransferase isozymes from Bacillus sp. A11. MSc Thesis, Chulalongkorn University, Bangkok, Thailand.Google Scholar
  29. 29.
    Zhang, W., & Czupryn, M. J. (2003). Analysis of isoaspartate in a recombinant monoclonal antibody and its charge isoforms. Journal of Pharmaceutical Biomedical Analysis, 30, 1479–1490.CrossRefGoogle Scholar
  30. 30.
    Perkins, M., Theiler, R., Lunte, S., & Jeschke, M. (2000). Determination of the origin of charge heterogeneity in a murine monoclonal antibody. Pharmaceutical Research, 17, 1110–1117.CrossRefGoogle Scholar
  31. 31.
    Curnis, F., Longhi, R., Crippa, L., Cattaneo, A., Dondossola, E., Bachi, A., et al. (2006). Spontaneous formation of l-isoaspartate and gain of function in fibronectin. Journal of Biological Chemistry, 281, 36466–36476.CrossRefGoogle Scholar
  32. 32.
    Kimura, K., Kataoka, S., Ishii, Y., Takano, T., & Yamane, K. (1987). Isoaspartate in ribosomal protein S11 of Escherichia coli. Journal of Bacteriology, 169, 4399–4402.Google Scholar
  33. 33.
    Yenpetch, W., Packdibumrung, K., Zimmermann, W., & Pongsawasdi. P (2010) Biochemical properties and cyclodextrin production profiles of isoforms of cyclodextrin glycosyltransferase. Journal of Inclusion Phenomena and Macrocyclic Chemistry. doi:10.1007/s10847-010-9856-7.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Wanchai Yenpetch
    • 1
  • Kanoktip Packdibamrung
    • 1
  • Wolfgang Zimmermann
    • 2
  • Piamsook Pongsawasdi
    • 1
  1. 1.Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Department of Microbiology and Bioprocess Technology, Institute of BiochemistryUniversity of LeipzigLeipzigGermany

Personalised recommendations