Advertisement

Molecular Biotechnology

, Volume 45, Issue 3, pp 226–234 | Cite as

Trichoplusia ni cells (High FiveTM) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines

  • Florian Krammer
  • Theresa Schinko
  • Dieter Palmberger
  • Christopher Tauer
  • Paul Messner
  • Reingard GrabherrEmail author
Research

Abstract

Virus-like particles (VLPs) consisting of the influenza A virus proteins haemagglutinin (HA) and matrix protein (M1) represent a new alternative approach for vaccine design against influenza virus. Influenza VLPs can be fast and easily produced in sufficient amounts in insect cells using the baculovirus expression system. Up to now, influenza VLPs have been produced in the Spodoptera frugiperda cell line Sf9. We compared VLP production in terms of yield and quality in two insect cell lines, namely Sf9 and the Trichoplusia ni cell line BTI-TN5B1-4 (High FiveTM). Additionally we compared VLP production with three different HAs and two different M1s from influenza H1 and H3 strains including one swine-origin pandemic H1N1 strain. Comparison of the two cell lines showed dramatic differences in baculovirus background as well as in yield and particle density. Taken together, we consider the establishment of the BTI-TN5B1-4 cell line advantageous as production cell line for influenza VLPs.

Keywords

Virus-like particles Influenza Influenza vaccine Baculovirus Insect cells 

References

  1. 1.
    Michaelis, M., Doerr, H., & Cinatl, J. J. (2009). Novel swine-origin influenza A virus in humans: another pandemic knocking at the door. Medical Microbiology and Immunology, 198(3), 175–183.Google Scholar
  2. 2.
    Nicholson, K., Wood, J., & Zambon, M. (2003). Influenza. Lancet, 362, 1733–1745.CrossRefGoogle Scholar
  3. 3.
    Erlewyn-Lajeunesse, M., Brathwaite, N., Lucas, J., & Warner, J. (2009). Recommendations for the administration of influenza vaccine in children allergic to egg. BMJ, 339, b3680.CrossRefGoogle Scholar
  4. 4.
    Biesova, Z., Miller, M., Schneerson, R., Shiloach, J., Green, K., Robbins, J., et al. (2009). Preparation, characterization, and immunogenicity in mice of a recombinant influenza H5 hemagglutinin vaccine against the avian H5N1 A/Vietnam/1203/2004 influenza virus. Vaccine, 27, 6234–6238.CrossRefGoogle Scholar
  5. 5.
    Cox, M. (2008). Progress on baculovirus-derived influenza vaccines. Current Opinion in Molecular Therapeutics, 10, 56–61.Google Scholar
  6. 6.
    D’Aoust, M., Lavoie, P., Couture, M., Trépanier, S., Guay, J., Dargis, M., et al. (2008). Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnology Journal, 6, 930–940.CrossRefGoogle Scholar
  7. 7.
    Zheng, L., Wang, F., Yang, Z., Chen, J., Chang, H., & Chen, Z. (2009). A single immunization with HA DNA vaccine by electroporation induces early protection against H5N1 avian influenza virus challenge in mice. BMC Infectious Diseases, 9, 17.CrossRefGoogle Scholar
  8. 8.
    Szécsi, J., Boson, B., Johnsson, P., Dupeyrot-Lacas, P., Matrosovich, M., Klenk, H., et al. (2006). Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses. Virology Journal, 3, 70.CrossRefGoogle Scholar
  9. 9.
    Nayak, D., Balogun, R., Yamada, H., Zhou, Z., & Barman, S. (2009). Influenza virus morphogenesis and budding. Virus Research, 143(2), 147–161.Google Scholar
  10. 10.
    Roy, P., & Noad, R. (2008). Virus-like particles as a vaccine delivery system: myths and facts. Human Vaccines 4, 5-12.Google Scholar
  11. 11.
    Kang, S., Song, J., Quan, F., & Compans, R. (2009). Influenza vaccines based on virus-like particles. Virus Research, 143, 140–146.CrossRefGoogle Scholar
  12. 12.
    Schiller, J., Castellsagué, X., Villa, L., & Hildesheim, A. (2008). An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine, 26(Suppl 10), K53–K61.CrossRefGoogle Scholar
  13. 13.
    Bright, R., Carter, D., Daniluk, S., Toapanta, F., Ahmad, A., Gavrilov, V., et al. (2007). Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine, 25, 3871–3878.CrossRefGoogle Scholar
  14. 14.
    Mahmood, K., Bright, R., Mytle, N., Carter, D., Crevar, C., Achenbach, J., et al. (2008). H5N1 VLP vaccine induced protection in ferrets against lethal challenge with highly pathogenic H5N1 influenza viruses. Vaccine, 26, 5393–5399.CrossRefGoogle Scholar
  15. 15.
    Ross, T., Mahmood, K., Crevar, C., Schneider-Ohrum, K., Heaton, P., & Bright, R. (2009). A trivalent virus-like particle vaccine elicits protective immune responses against seasonal influenza strains in mice and ferrets. PLoS One, 4, e6032.CrossRefGoogle Scholar
  16. 16.
    Perrone, L., Ahmad, A., Veguilla, V., Lu, X., Smith, G., Katz, J., et al. (2009). Intranasal vaccination with 1918 influenza virus-like particles protects mice and ferrets from lethal 1918 and H5N1 influenza virus challenge. Journal of Virology, 83, 5726–5734.CrossRefGoogle Scholar
  17. 17.
    Quan, F., Huang, C., Compans, R., & Kang, S. (2007). Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. Journal of Virology, 81, 3514–3524.CrossRefGoogle Scholar
  18. 18.
    Galarza, J., Latham, T., & Cupo, A. (2005). Virus-like particle (VLP) vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunology, 18, 244–251.CrossRefGoogle Scholar
  19. 19.
    Latham, T., & Galarza, J. (2001). Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. Journal of Virology, 75, 6154–6165.CrossRefGoogle Scholar
  20. 20.
    Pushko, P., Tumpey, T., Bu, F., Knell, J., Robinson, R., & Smith, G. (2005). Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine, 23, 5751–5759.CrossRefGoogle Scholar
  21. 21.
    Wickham, T., Davis, T., Granados, R., Shuler, M., & Wood, H. (1992). Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system. Biotechnology Progress, 8, 391–396.Google Scholar
  22. 22.
    King, L., Hitchman, R., & Possee, R. (2007). Recombinant baculovirus isolation. Methods in Molecular Biology, 388, 77–94.CrossRefGoogle Scholar
  23. 23.
    Laemmli, U. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.CrossRefGoogle Scholar
  24. 24.
    Mäkelä, A., Tuusa, J., Volkman, L., & Oker-Blom, C. (2008). Occlusion-derived baculovirus: interaction with human cells and evaluation of the envelope protein P74 as a surface display platform. Journal of Biotechnology, 135, 145–156.CrossRefGoogle Scholar
  25. 25.
    Sarkar, N., Manthey, W., & Sheffield, J. (1975). The morphology of murine oncornaviruses following different methods of preparation for electron microscopy. Cancer Research, 35, 740–749.Google Scholar
  26. 26.
    Harris, A., Cardone, G., Winkler, D., Heymann, J., Brecher, M., White, J., et al. (2006). Influenza virus pleiomorphy characterized by cryoelectron tomography. Proceedings of the National Academy of Sciences of the United States of America, 103, 19123–19127.CrossRefGoogle Scholar
  27. 27.
    Krammer, F., Nakowitsch, S., Messner, P., Palmberger, D., Ferko, B., & Grabherr, R. (2010). Swine-origin pandemic H1N1 influenza virus-like particles produced in insect cells induce hemagglutination inhibiting antibodies in BALB/c mice. Biotechnology Journal, 5, 17–23.CrossRefGoogle Scholar
  28. 28.
    Hu, Y. (2008). Baculoviral vectors for gene delivery: a review. Current Gene Therapy, 8, 54–65.CrossRefGoogle Scholar
  29. 29.
    Kost, T., & Condreay, J. (1999). Recombinant baculoviruses as expression vectors for insect and mammalian cells. Current Opinion in Biotechnology, 10, 428–433.CrossRefGoogle Scholar
  30. 30.
    Kost, T., & Condreay, J. (2002). Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends in Biotechnology, 20, 173–180.CrossRefGoogle Scholar
  31. 31.
    Nakowitsch, S., Kittel, C., Ernst, W., Egorov, A., & Grabherr, R. (2006). Optimization of baculovirus transduction on FreeStyle293 cells for the generation of influenza B/Lee/40. Molecular Biotechnology, 34, 157–164.CrossRefGoogle Scholar
  32. 32.
    Ernst, W., Schinko, T., Spenger, A., Oker-Blom, C., & Grabherr, R. (2006). Improving baculovirus transduction of mammalian cells by surface display of a RGD-motif. Journal of Biotechnology, 126, 237–240.CrossRefGoogle Scholar
  33. 33.
    Spenger, A., Ernst, W., Condreay, J., Kost, T., & Grabherr, R. (2004). Influence of promoter choice and trichostatin A treatment on expression of baculovirus delivered genes in mammalian cells. Protein Expression and Purification, 38, 17–23.CrossRefGoogle Scholar
  34. 34.
    Abe, T., Takahashi, H., Hamazaki, H., Miyano-Kurosaki, N., Matsuura, Y., & Takaku, H. (2003). Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. Journal of Immunology, 171, 1133–1139.Google Scholar
  35. 35.
    Abe, T., Hemmi, H., Miyamoto, H., Moriishi, K., Tamura, S., Takaku, H., et al. (2005). Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus. Journal of Virology, 79, 2847–2858.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Florian Krammer
    • 1
  • Theresa Schinko
    • 1
  • Dieter Palmberger
    • 1
  • Christopher Tauer
    • 1
  • Paul Messner
    • 2
  • Reingard Grabherr
    • 1
    Email author
  1. 1.Vienna Institute of BioTechnology, Department of BiotechnologyUniversity of Natural Resources and Applied Life SciencesViennaAustria
  2. 2.Vienna Institute of Biotechnology, Department of NanobiotechnologyUniversity of Natural Resources and Applied Life SciencesViennaAustria

Personalised recommendations