Molecular Biotechnology

, Volume 45, Issue 1, pp 39–48 | Cite as

Whole Genome Expression Profiling Reveals a Significant Role for the Cell Junction and Apoptosis Pathways in Breast Cancer Stem Cells

Research

Abstract

Side population (SP) cells in primary tumors and cell lines are a small cell population, but they are known to enrich cancer stem cells (CSCs). In this study, we isolated SP cells from the human breast cancer cell line MCF7 as a model for studying CSCs. Compared with non-SP cells, MCF7 SP cells had higher mammosphere-formation efficiency (MFE) in vitro and greater tumorigenicity in vivo, suggesting that MCF7 SP cells enrich CSCs. We first directly compared the gene expression profile of SP and non-SP cells from MCF7 cell line. Comparing the expression signature of SP to non-SP cells, we identified 753 differentially expressed genes (DEGs). Using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we identified multiple pathways that were aberrantly regulated in SP compared with non-SP cells. Several pathways, including cell junction and apoptosis, play important roles in breast CSC function. This study demonstrates that combining global gene expression analysis with detailed annotated pathway resources can enhance our understanding of the critical pathways that regulate breast CSCs.

Keywords

Breast neoplasm Cancer stem cells Side population cells Microarray Gene regulatory networks 

Notes

Acknowledgments

The authors thank to ZhongXin Biotechnology (Shanghai, China) for the help of microarray analysis. This study was supported in part by the grant from National Natural Science Fund of China (30670798).

References

  1. 1.
    Parkin, D. M., Bray, F., Ferlay, J., & Pisani, P. (2001). Estimating the world cancer burden: Globocan 2000. International Journal of Cancer, 94, 153–156.CrossRefGoogle Scholar
  2. 2.
    Zhang, M., & Rosen, J. M. (2006). Stem cells in the etiology and treatment of cancer. Current Opinion in Genetics and Development, 16, 60–64.CrossRefGoogle Scholar
  3. 3.
    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.CrossRefGoogle Scholar
  4. 4.
    Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730–737.CrossRefGoogle Scholar
  5. 5.
    Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65, 10946–10951.CrossRefGoogle Scholar
  6. 6.
    Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432, 396–401.CrossRefGoogle Scholar
  7. 7.
    Kim, C. F., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121, 823–835.CrossRefGoogle Scholar
  8. 8.
    O’Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445, 106–110.CrossRefGoogle Scholar
  9. 9.
    Houghton, J., Stoicov, C., Nomura, S., Rogers, A. B., Carlson, J., Li, H., et al. (2004). Gastric cancer originating from bone marrow-derived cells. Science, 306, 1568–1571.CrossRefGoogle Scholar
  10. 10.
    Zhang, S., Balch, C., Chan, M. W., Lai, H. C., Matei, D., Schilder, J. M., et al. (2008). Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Research, 68, 4311–4320.CrossRefGoogle Scholar
  11. 11.
    Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 183, 1797–1806.CrossRefGoogle Scholar
  12. 12.
    Hirschmann-Jax, C., Foster, A. E., Wulf, G. G., Nuchtern, J. G., Jax, T. W., Gobel, U., et al. (2004). A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 14228–14233.CrossRefGoogle Scholar
  13. 13.
    Patrawala, L., Calhoun, T., Schneider-Broussard, R., Zhou, J., Claypool, K., & Tang, D. G. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Research, 65, 6207–6219.CrossRefGoogle Scholar
  14. 14.
    Kondo, T., Setoguchi, T., & Taga, T. (2004). Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proceedings of the National Academy of Sciences of the United States of America, 101, 781–786.CrossRefGoogle Scholar
  15. 15.
    Quackenbush, J. (2006). Microarray analysis and tumor classification. New England Journal of Medicine, 354, 2463–2472.CrossRefGoogle Scholar
  16. 16.
    Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131, 1109–1123.CrossRefGoogle Scholar
  17. 17.
    Liu, R., Wang, X., Chen, G. Y., Dalerba, P., Gurney, A., Hoey, T., et al. (2007). The prognostic role of a gene signature from tumorigenic breast-cancer cells. New England Journal of Medicine, 356, 217–226.CrossRefGoogle Scholar
  18. 18.
    Liu, S., Dontu, G., Mantle, I. D., Patel, S., Ahn, N. S., Jackson, K. W., et al. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Research, 66, 6063–6071.CrossRefGoogle Scholar
  19. 19.
    Zhou, J., Wulfkuhle, J., Zhang, H., Gu, P., Yang, Y., Deng, J., et al. (2007). Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proceedings of the National Academy of Sciences of the United States of America, 104, 16158–16163.CrossRefGoogle Scholar
  20. 20.
    Clarke, M. F., & Fuller, M. (2006). Stem cells and cancer: Two faces of eve. Cell, 124, 1111–1115.CrossRefGoogle Scholar
  21. 21.
    Nagafuchi, A. (2001). Molecular architecture of adherens junctions. Current Opinion in Cell Biology, 13, 600–603.CrossRefGoogle Scholar
  22. 22.
    Turashvili, G., Bouchal, J., Baumforth, K., Wei, W., Dziechciarkova, M., Ehrmann, J., et al. (2007). Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer, 7, 55.CrossRefGoogle Scholar
  23. 23.
    Spradling, A., Drummond-Barbosa, D., & Kai, T. (2001). Stem cells find their niche. Nature, 414, 98–104.CrossRefGoogle Scholar
  24. 24.
    Song, X., & Xie, T. (2002). DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proceedings of the National Academy of Sciences of the United States of America, 99, 14813–14818.CrossRefGoogle Scholar
  25. 25.
    Kabashima, A., Higuchi, H., Takaishi, H., Matsuzaki, Y., Suzuki, S., Izumiya, M., et al. (2009). Side population of pancreatic cancer cells predominates in TGF-beta-mediated epithelial to mesenchymal transition and invasion. International Journal of Cancer, 124, 2771–2779.CrossRefGoogle Scholar
  26. 26.
    Tsukita, S., & Furuse, M. (2000). The structure and function of claudins, cell adhesion molecules at tight junctions. Annals of the New York Academy of Sciences, 915, 129–135.CrossRefGoogle Scholar
  27. 27.
    Schmelzer, E., Zhang, L., Bruce, A., Wauthier, E., Ludlow, J., Yao, H. L., et al. (2007). Human hepatic stem cells from fetal and postnatal donors. Journal of Experimental Medicine, 204, 1973–1987.CrossRefGoogle Scholar
  28. 28.
    Blumenthal, R. D., Leon, E., Hansen, H. J., & Goldenberg, D. M. (2007). Expression patterns of CEACAM5 and CEACAM6 in primary and metastatic cancers. BMC Cancer, 7, 2.CrossRefGoogle Scholar
  29. 29.
    Laack, E., Nikbakht, H., Peters, A., Kugler, C., Jasiewicz, Y., Edler, L., et al. (2002). Expression of CEACAM1 in adenocarcinoma of the lung: A factor of independent prognostic significance. Journal of Clinical Oncology, 20, 4279–4284.CrossRefGoogle Scholar
  30. 30.
    Thom, I., Schult-Kronefeld, O., Burkholder, I., Schuch, G., Andritzky, B., Kastendieck, H., et al. (2009). Expression of CEACAM-1 in pulmonary adenocarcinomas and their metastases. Anticancer Research, 29, 249–254.Google Scholar
  31. 31.
    Madjd, Z., Mehrjerdi, A. Z., Sharifi, A. M., Molanaei, S., Shahzadi, S. Z., & Asadi-Lari, M. (2009). CD44+ cancer cells express higher levels of the anti-apoptotic protein Bcl-2 in breast tumours. Cancer Immunity, 9, 4.Google Scholar
  32. 32.
    Balic, M., Lin, H., Young, L., Hawes, D., Giuliano, A., McNamara, G., et al. (2006). Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clinical Cancer Research, 12, 5615–5621.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Radiotherapy, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.College of ChemistryNanjing UniversityNanjingChina
  3. 3.Department of Oncology, Renji HospitalShanghai Jiaotong University School of MedicineShanghaiChina

Personalised recommendations