Advertisement

Molecular Biotechnology

, Volume 45, Issue 1, pp 87–100 | Cite as

The Current State of Chromatin Immunoprecipitation

  • Philippe Collas
Review

Abstract

The biological significance of interactions of nuclear proteins with DNA in the context of gene expression, cell differentiation, or disease has immensely been enhanced by the advent of chromatin immunoprecipitation (ChIP). ChIP is a technique whereby a protein of interest is selectively immunoprecipitated from a chromatin preparation to determine the DNA sequences associated with it. ChIP has been widely used to map the localization of post-translationally modified histones, histone variants, transcription factors, or chromatin modifying enzymes on the genome or on a given locus. In spite of its power, ChIP has for a long time remained a cumbersome procedure requiring large numbers of cells. These limitations have sparked the development of modifications to shorten the procedure, simplify sample handling and make ChIP amenable to small numbers of cells. In addition, the combination of ChIP with DNA microarray and high-throughput sequencing technologies has in recent years enabled the profiling of histone modification, histone variants, and transcription factor occupancy on a genome-wide scale. This review highlights the variations on the theme of the ChIP assay, the various detection methods applied downstream of ChIP, and examples of their application.

Keywords

Chromatin immunoprecipitation (ChIP) MeDIP Histone Acetylation Methylation DNA binding Epigenetics 

Notes

Acknowledgments

Our work is supported by grants from the Research Council of Norway, the Norwegian Cancer Society and the University of Oslo.

References

  1. 1.
    Antequera, F. (2003). Structure, function and evolution of CpG island promoters. Cellular and Molecular Life Sciences, 60, 1647–1658.Google Scholar
  2. 2.
    Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128, 693–705.Google Scholar
  3. 3.
    Mito, Y., Henikoff, J. G., & Henikoff, S. (2007). Histone replacement marks the boundaries of cis-regulatory domains. Science, 315, 1408–1411.Google Scholar
  4. 4.
    Mito, Y., Henikoff, J. G., & Henikoff, S. (2005). Genome-scale profiling of histone H3.3 replacement patterns. Nature Genetics, 37, 1090–1097.Google Scholar
  5. 5.
    Viens, A., Mechold, U., Brouillard, F., Gilbert, C., Leclerc, P., & Ogryzko, V. (2006). Analysis of human histone H2AZ deposition in vivo argues against its direct role in epigenetic templating mechanisms. Molecular and Cellular Biology, 26, 5325–5335.Google Scholar
  6. 6.
    Li, B., Pattenden, S. G., Lee, D., Gutierrez, J., Chen, J., Seidel, C., et al. (2005). Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proceedings of the National Academy of Sciences of the United States of America, 102, 18385–18390.Google Scholar
  7. 7.
    Li, A., Eirin-Lopez, J. M., & Ausio, J. (2005). H2AX: Tailoring histone H2A for chromatin-dependent genomic integrity. Biochemistry and Cell Biology, 83, 505–515.Google Scholar
  8. 8.
    Hoffman, A. R., & Hu, J. F. (2006). Directing DNA methylation to inhibit gene expression. Cellular and Molecular Neurobiology, 26, 425–438.Google Scholar
  9. 9.
    Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: The mark and its mediators. Trends in Biochemical Sciences, 31, 89–97.Google Scholar
  10. 10.
    Morgan, H. D., Santos, F., Green, K., Dean, W., & Reik, W. (2005). Epigenetic reprogramming in mammals. Human Molecular Genetics, 14, R47–R58.Google Scholar
  11. 11.
    Young, L. E., & Beaujean, N. (2004). DNA methylation in the preimplantation embryo: The differing stories of the mouse and sheep. Animal Reproduction Science, 82, 61–78.Google Scholar
  12. 12.
    Razin, A., & Shemer, R. (1995). DNA methylation in early development. Human Molecular Genetics, 4, 1751–1755.Google Scholar
  13. 13.
    Hellman, A., & Chess, A. (2007). Gene body-specific methylation on the active X chromosome. Science, 315, 1141–1143.Google Scholar
  14. 14.
    Tremblay, K. D., Saam, J. R., Ingram, R. S., Tilghman, S. M., & Bartolomei, M. S. (1995). A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nature Genetics, 9, 407–413.Google Scholar
  15. 15.
    Reik, W., Collick, A., Norris, M. L., Barton, S. C., & Surani, M. A. (1987). Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature, 328, 248–251.Google Scholar
  16. 16.
    Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Paabo, S., Rebhan, M., et al. (2007). Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genetics, 39, 457–466.Google Scholar
  17. 17.
    Fouse, S. D., Shen, Y., Pellegrini, M., Cole, S., Meissner, A., Van, N. L., et al. (2008). Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell, 2, 160–169.Google Scholar
  18. 18.
    Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293, 1074–1080.Google Scholar
  19. 19.
    Mellor, J. (2006). It takes a PHD to read the histone code. Cell, 126, 22–24.Google Scholar
  20. 20.
    Cosgrove, M. S., & Wolberger, C. (2005). How does the histone code work? Biochemistry and Cell Biology, 83, 468–476.Google Scholar
  21. 21.
    Lachner, M., O’Carroll, D., Rea, S., Mechtler, K., & Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 410, 116–120.Google Scholar
  22. 22.
    Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., et al. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science, 298, 1039–1043.Google Scholar
  23. 23.
    Cao, R., & Zhang, Y. (2004). The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Current Opinion in Genetics and Development, 14, 155–164.Google Scholar
  24. 24.
    Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini, D. E., & Helin, K. (2004). Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO Journal, 23, 4061–4071.Google Scholar
  25. 25.
    Lachner, M., & Jenuwein, T. (2002). The many faces of histone lysine methylation. Current Opinion in Cell Biology, 14, 286–298.Google Scholar
  26. 26.
    Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jorgensen, H. F., John, R. M., et al. (2006). Chromatin signatures of pluripotent cell lines. Nature Cell Biology, 8, 532–538.Google Scholar
  27. 27.
    Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315–326.Google Scholar
  28. 28.
    Kingston, R. E., & Narlikar, G. J. (1999). ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes and Development, 13, 2339–2352.Google Scholar
  29. 29.
    Pray-Grant, M. G., Daniel, J. A., Schieltz, D., Yates, J. R., I. I. I., & Grant, P. A. (2005). Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature, 433, 434–438.Google Scholar
  30. 30.
    Struhl, K. (1998). Histone acetylation and transcriptional regulatory mechanisms. Genes and Development, 12, 599–606.Google Scholar
  31. 31.
    Santos-Rosa, H., Schneider, R., Bannister, A. J., Sherriff, J., Bernstein, B. E., Emre, N. C., et al. (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419, 407–411.Google Scholar
  32. 32.
    Schubeler, D., MacAlpine, D. M., Scalzo, D., Wirbelauer, C., Kooperberg, C., van, L. F., et al. (2004). The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes and Development, 18, 1263–1271.Google Scholar
  33. 33.
    Zhao, X. D., Han, X., Chew, J. L., Liu, J., Chiu, K. P., Choo, A., et al. (2007). Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell, 1, 286–298.Google Scholar
  34. 34.
    Ruthenburg, A. J., Allis, C. D., & Wysocka, J. (2007). Methylation of lysine 4 on histone H3: Intricacy of writing and reading a single epigenetic mark. Molecular Cell, 25, 15–30.Google Scholar
  35. 35.
    Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., et al. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448, 553–560.Google Scholar
  36. 36.
    O’Neill, L. P., & Turner, B. M. (1995). Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO Journal, 14, 3946–3957.Google Scholar
  37. 37.
    O’Neill, L. P., & Turner, B. M. (1996). Immunoprecipitation of chromatin. Methods in Enzymology, 274, 189–197.Google Scholar
  38. 38.
    Zeng, P. Y., Vakoc, C. R., Chen, Z. C., Blobel, G. A., & Berger, S. L. (2006). In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques, 41, 694, 696, 698.Google Scholar
  39. 39.
    O’Neill, L. P., Vermilyea, M. D., & Turner, B. M. (2006). Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nature Genetics, 38, 835–841.Google Scholar
  40. 40.
    Hanlon, S. E., & Lieb, J. D. (2004). Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays. Current Opinion in Genetics and Development, 14, 697–705.Google Scholar
  41. 41.
    Sikder, D., & Kodadek, T. (2005). Genomic studies of transcription factor-DNA interactions. Current Opinion in Chemical Biology, 9, 38–45.Google Scholar
  42. 42.
    Lee, T. I., Johnstone, S. E., & Young, R. A. (2006). Chromatin immunoprecipitation and microarray-based analysis of protein location. Nature Protocols, 1, 729–748.Google Scholar
  43. 43.
    Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38, 431–440.Google Scholar
  44. 44.
    Wei, C. L., Wu, Q., Vega, V. B., Chiu, K. P., Ng, P., Zhang, T., et al. (2006). A global map of p53 transcription-factor binding sites in the human genome. Cell, 124, 207–219.Google Scholar
  45. 45.
    Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., et al. (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129, 823–837.Google Scholar
  46. 46.
    Kuo, M. H., & Allis, C. D. (1999). In vivo cross-linking and immunoprecipitation for studying dynamic protein: DNA associations in a chromatin environment. Methods, 19, 425–433.Google Scholar
  47. 47.
    Solomon, M. J., Larsen, P. L., & Varshavsky, A. (1988). Mapping protein-DNA interactions in vivo with formaldehyde: Evidence that histone H4 is retained on a highly transcribed gene. Cell, 53, 937–947.Google Scholar
  48. 48.
    Dedon, P. C., Soults, J. A., Allis, C. D., & Gorovsky, M. A. (1991). Formaldehyde cross-linking and immunoprecipitation demonstrate developmental changes in H1 association with transcriptionally active genes. Molecular and Cellular Biology, 11, 1729–1733.Google Scholar
  49. 49.
    Madisen, L., Krumm, A., Hebbes, T. R., & Groudine, M. (1998). The immunoglobulin heavy chain locus control region increases histone acetylation along linked c-myc genes. Molecular and Cellular Biology, 18, 6281–6292.Google Scholar
  50. 50.
    Hebbes, T. R., Clayton, A. L., Thorne, A. W., & Crane-Robinson, C. (1994). Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO Journal, 13, 1823–1830.Google Scholar
  51. 51.
    Hebbes, T. R., Thorne, A. W., Clayton, A. L., & Crane-Robinson, C. (1992). Histone acetylation and globin gene switching. Nucleic Acids Research, 20, 1017–1022.Google Scholar
  52. 52.
    Hebbes, T. R., Thorne, A. W., & Crane-Robinson, C. (1988). A direct link between core histone acetylation and transcriptionally active chromatin. EMBO Journal, 7, 1395–1402.Google Scholar
  53. 53.
    Spencer, V. A., Sun, J. M., Li, L., & Davie, J. R. (2003). Chromatin immunoprecipitation: A tool for studying histone acetylation and transcription factor binding. Methods, 31, 67–75.Google Scholar
  54. 54.
    Acevedo, L. G., Iniguez, A. L., Holster, H. L., Zhang, X., Green, R., & Farnham, P. J. (2007). Genome-scale ChIP-chip analysis using 10,000 human cells. Biotechniques, 43, 791–797.Google Scholar
  55. 55.
    Attema, J. L., Papathanasiou, P., Forsberg, E. C., Xu, J., Smale, S. T., & Weissman, I. L. (2007). Epigenetic characterization of hematopoietic stem cell differentiation using miniChIP and bisulfite sequencing analysis. Proceedings of the National Academy of Sciences of the United States of America, 104, 12371–12376.Google Scholar
  56. 56.
    Dahl, J. A., & Collas, P. (2007). Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells, 25, 1037–1046.Google Scholar
  57. 57.
    Dahl, J. A., & Collas, P. (2008). MicroChIP—a rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies. Nucleic Acids Research, 36, e15.Google Scholar
  58. 58.
    Dahl, J. A., & Collas, P. (2008). A rapid micro chromatin immunoprecipitation assay (μChIP). Nature Protocols, 3, 1032–1045.Google Scholar
  59. 59.
    Dahl, J. A., Reiner, A. H., & Collas, P. (2009). Fast genomic ChIP-chip from 1,000 cells. Genome Biology, 10, R13.Google Scholar
  60. 60.
    Goren, A., Ozsolak, F., Shoresh, N., Ku, M., Adli, M., Hart, C., Gymrek, M., Zuk, O., Regev, A., Milos, P. M., & Bernstein, B. E. (2010). Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nature Methods, 7, 47–49.Google Scholar
  61. 61.
    Nelson, J. D., Denisenko, O., & Bomsztyk, K. (2006). Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nature Protocols, 1, 179–185.Google Scholar
  62. 62.
    Nelson, J. D., Denisenko, O., Sova, P., & Bomsztyk, K. (2006). Fast chromatin immunoprecipitation assay. Nucleic Acids Research, 34, e2.Google Scholar
  63. 63.
    Kohzaki, H., & Murakami, Y. (2007). Faster and easier chromatin immunoprecipitation assay with high sensitivity. Proteomics, 7, 10–14.Google Scholar
  64. 64.
    Flanagin, S., Nelson, J. D., Castner, D. G., Denisenko, O., & Bomsztyk, K. (2008). Microplate-based chromatin immunoprecipitation method, Matrix ChIP: A platform to study signaling of complex genomic events. Nucleic Acids Research, 36, e17.Google Scholar
  65. 65.
    Peluso, P., Wilson, D. S., Do, D., Tran, H., Venkatasubbaiah, M., Quincy, D., et al. (2003). Optimizing antibody immobilization strategies for the construction of protein microarrays. Analytical Biochemistry, 312, 113–124.Google Scholar
  66. 66.
    Brand, M., Rampalli, S., Chaturvedi, C. P., & Dilworth, F. J. (2008). Analysis of epigenetic modifications of chromatin at specific gene loci by native chromatin immunoprecipitation of nucleosomes isolated using hydroxyapatite chromatography. Nature Protocols, 3, 398–409.Google Scholar
  67. 67.
    Das, P. M., Ramachandran, K., vanWert, J., & Singal, R. (2004). Chromatin immunoprecipitation assay. Biotechniques, 37, 961–969.Google Scholar
  68. 68.
    Szekvolgyi, L., Balint, B. L., Imre, L., Goda, K., Szabo, M., Nagy, L., et al. (2006). Chip-on-beads: Flow-cytometric evaluation of chromatin immunoprecipitation. Cytometry, 69, 1086–1091.Google Scholar
  69. 69.
    Roh, T. Y., Cuddapah, S., Cui, K., & Zhao, K. (2006). The genomic landscape of histone modifications in human T cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 15782–15787.Google Scholar
  70. 70.
    Chaya, D., Hayamizu, T., Bustin, M., & Zaret, K. S. (2001). Transcription factor FoxA (HNF3) on a nucleosome at an enhancer complex in liver chromatin. Journal of Biological Chemistry, 276, 44385–44389.Google Scholar
  71. 71.
    Metivier, R., Penot, G., Hubner, M. R., Reid, G., Brand, H., Kos, M., et al. (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell, 115, 751–763.Google Scholar
  72. 72.
    Wilkinson, D. S., Tsai, W. W., Schumacher, M. A., & Barton, M. C. (2008). Chromatin-bound p53 anchors activated Smads and the mSin3A corepressor to confer transforming-growth-factor-beta-mediated transcription repression. Molecular and Cellular Biology, 28, 1988–1998.Google Scholar
  73. 73.
    Jalvy, S., Renault, M. A., Lam Shang, L. L., Belloc, I., Reynaud, A., Gadeau, A. P., et al. (2007). CREB mediates UTP-directed arterial smooth muscle cell migration and expression of the chemotactic protein osteopontin via its interaction with activator protein-1 sites. Circulation Research, 100, 1292–1299.Google Scholar
  74. 74.
    Brunelli, L., Cieslik, K. A., Alcorn, J. L., Vatta, M., & Baldini, A. (2007). Peroxisome proliferator-activated receptor-delta upregulates 14-3-3 epsilon in human endothelial cells via CCAAT/enhancer binding protein-beta. Circulation Research, 100, e59–e71.Google Scholar
  75. 75.
    Kobrossy, L., Rastegar, M., & Featherstone, M. (2006). Interplay between chromatin and trans-acting factors regulating the Hoxd4 promoter during neural differentiation. Journal of Biological Chemistry, 281, 25926–25939.Google Scholar
  76. 76.
    Cui, R., Nguyen, T. T., Taube, J. H., Stratton, S. A., Feuerman, M. H., & Barton, M. C. (2005). Family members p53 and p73 act together in chromatin modification and direct repression of alpha-fetoprotein transcription. Journal of Biological Chemistry, 280, 39152–39160.Google Scholar
  77. 77.
    Geisberg, J. V., & Struhl, K. (2004). Quantitative sequential chromatin immunoprecipitation, a method for analyzing co-occupancy of proteins at genomic regions in vivo. Nucleic Acids Research, 32, e151.Google Scholar
  78. 78.
    Chaya, D., & Zaret, K. S. (2004). Sequential chromatin immunoprecipitation from animal tissues. Methods in Enzymology, 376, 361–372.Google Scholar
  79. 79.
    Jin, C., Zang, C., Wei, G., Cui, K., Peng, W., Zhao, K., et al. (2009). H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions. Nature Genetics, 41, 941–945.Google Scholar
  80. 80.
    Iyer, V. R., Horak, C. E., Scafe, C. S., Botstein, D., Snyder, M., & Brown, P. O. (2001). Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature, 409, 533–538.Google Scholar
  81. 81.
    Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G., Simon, I., et al. (2000). Genome-wide location and function of DNA binding proteins. Science, 290, 2306–2309.Google Scholar
  82. 82.
    Clark, D. J., & Shen, C. H. (2006). Mapping histone modifications by nucleosome immunoprecipitation. Methods in Enzymology, 410, 416–430.Google Scholar
  83. 83.
    Loden, M., & van, S. B. (2005). Whole-genome views of chromatin structure. Chromosome Research, 13, 289–298.Google Scholar
  84. 84.
    Dang, C. V., O’Donnell, K. A., Zeller, K. I., Nguyen, T., Osthus, R. C., & Li, F. (2006). The c-Myc target gene network. Seminars in Cancer Biology, 16, 253–264.Google Scholar
  85. 85.
    Lee, L. A., & Dang, C. V. (2006). Myc target transcriptomes. Current Topics in Microbiology and Immunology, 302, 145–167.Google Scholar
  86. 86.
    Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947–956.Google Scholar
  87. 87.
    Boyer, L. A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L. A., Lee, T. I., et al. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 441, 349–353.Google Scholar
  88. 88.
    Lee, T. I., Jenner, R. G., Boyer, L. A., Guenther, M. G., Levine, S. S., Kumar, R. M., et al. (2006). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell, 125, 301–313.Google Scholar
  89. 89.
    Bulyk, M. L. (2006). DNA microarray technologies for measuring protein-DNA interactions. Current Opinion in Biotechnology, 17, 422–430.Google Scholar
  90. 90.
    Hudson, M. E., & Snyder, M. (2006). High-throughput methods of regulatory element discovery. Biotechniques, 41, 673, 675, 677.Google Scholar
  91. 91.
    Elnitski, L., Jin, V. X., Farnham, P. J., & Jones, S. J. (2006). Locating mammalian transcription factor binding sites: A survey of computational and experimental techniques. Genome Research, 16, 1455–1464.Google Scholar
  92. 92.
    Weinmann, A. S., Bartley, S. M., Zhang, T., Zhang, M. Q., & Farnham, P. J. (2001). Use of chromatin immunoprecipitation to clone novel E2F target promoters. Molecular and Cellular Biology, 21, 6820–6832.Google Scholar
  93. 93.
    Hug, B. A., Ahmed, N., Robbins, J. A., & Lazar, M. A. (2004). A chromatin immunoprecipitation screen reveals protein kinase Cbeta as a direct RUNX1 target gene. Journal of Biological Chemistry, 279, 825–830.Google Scholar
  94. 94.
    Barski, A., & Frenkel, B. (2004). ChIP Display: Novel method for identification of genomic targets of transcription factors. Nucleic Acids Research, 32, e104.Google Scholar
  95. 95.
    Ng, P., Wei, C. L., Sung, W. K., Chiu, K. P., Lipovich, L., Ang, C. C., et al. (2005). Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nature Methods, 2, 105–111.Google Scholar
  96. 96.
    Ng, P., Tan, J. J., Ooi, H. S., Lee, Y. L., Chiu, K. P., Fullwood, M. J., et al. (2006). Multiplex sequencing of paired-end ditags (MS-PET): A strategy for the ultra-high-throughput analysis of transcriptomes and genomes. Nucleic Acids Research, 34, e84.Google Scholar
  97. 97.
    Kwon, Y. S., Garcia-Bassets, I., Hutt, K. R., Cheng, C. S., Jin, M., Liu, D., et al. (2007). Sensitive ChIP-DSL technology reveals an extensive estrogen receptor alpha-binding program on human gene promoters. Proceedings of the National Academy of Sciences of the United States of America, 104, 4852–4857.Google Scholar
  98. 98.
    Garcia-Bassets, I., Kwon, Y. S., Telese, F., Prefontaine, G. G., Hutt, K. R., Cheng, C. S., et al. (2007). Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell, 128, 505–518.Google Scholar
  99. 99.
    Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., et al. (2007). Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods, 4, 651–657.Google Scholar
  100. 100.
    Bock, C., & Lengauer, T. (2008). Computational epigenetics. Bioinformatics, 24, 1–10.Google Scholar
  101. 101.
    Ji, H., Vokes, S. A., & Wong, W. H. (2006). A comparative analysis of genome-wide chromatin immunoprecipitation data for mammalian transcription factors. Nucleic Acids Research, 34, e146.Google Scholar
  102. 102.
    Matarazzo, M. R., Lembo, F., Angrisano, T., Ballestar, E., Ferraro, M., Pero, R., et al. (2004). In vivo analysis of DNA methylation patterns recognized by specific proteins: Coupling CHIP and bisulfite analysis. Biotechniques, 37, 666–669.Google Scholar
  103. 103.
    Orian, A. (2006). Chromatin profiling, DamID and the emerging landscape of gene expression. Current Opinion in Genetics and Development, 16, 157–164.Google Scholar
  104. 104.
    van Steensel, B., Delrow, J., & Henikoff, S. (2001). Chromatin profiling using targeted DNA adenine methyltransferase. Nature Genetics, 27, 304–308.Google Scholar
  105. 105.
    Orian, A., van, S. B., Delrow, J., Bussemaker, H. J., Li, L., Sawado, T., et al. (2003). Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes and Development, 17, 1101–1114.Google Scholar
  106. 106.
    Tompa, R., McCallum, C. M., Delrow, J., Henikoff, J. G., van, S. B., & Henikoff, S. (2002). Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3. Current Biology, 12, 65–68.Google Scholar
  107. 107.
    de Wit, E., Greil, F., & van Steensel, B. (2005). Genome-wide HP1 binding in Drosophila: Developmental plasticity and genomic targeting signals. Genome Research, 15, 1265–1273.Google Scholar
  108. 108.
    van Steensel, B. (2005). Mapping of genetic and epigenetic regulatory networks using microarrays. Nature Genetics, 37, S18–S24.Google Scholar
  109. 109.
    Vogel, M. J., Guelen, L., de Wit, E., Peric-Hupkes, D., Loden, M., Talhout, W., et al. (2006). Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Research, 16, 1493–1504.Google Scholar
  110. 110.
    Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M. B., Talhout, W., et al. (2008). Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature, 453, 948–951.Google Scholar
  111. 111.
    Keshet, I., Schlesinger, Y., Farkash, S., Rand, E., Hecht, M., Segal, E., et al. (2006). Evidence for an instructive mechanism of de novo methylation in cancer cells. Nature Genetics, 38, 149–153.Google Scholar
  112. 112.
    Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L., et al. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics, 37, 853–862.Google Scholar
  113. 113.
    Wilson, I. M., Davies, J. J., Weber, M., Brown, C. J., Alvarez, C. E., Macaulay, C., et al. (2006). Epigenomics: Mapping the methylome. Cell Cycle, 5, 155–158.Google Scholar
  114. 114.
    Taylor, K. H., Kramer, R. S., Davis, J. W., Guo, J., Duff, D. J., Xu, D., et al. (2007). Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Research, 67, 8511–8518.Google Scholar
  115. 115.
    Yazaki, J., Gregory, B. D., & Ecker, J. R. (2007). Mapping the genome landscape using tiling array technology. Current Opinion in Plant Biology, 10, 534–542.Google Scholar
  116. 116.
    Zilberman, D., & Henikoff, S. (2007). Genome-wide analysis of DNA methylation patterns. Development, 134, 3959–3965.Google Scholar
  117. 117.
    Jacinto, F. V., Ballestar, E., & Esteller, M. (2008). Methyl-DNA immunoprecipitation (MeDIP): Hunting down the DNA methylome. Biotechniques, 44, 35, 37, 39.Google Scholar
  118. 118.
    Sørensen, A. L., & Collas, P. (2009). Immunoprecipitation of methylated DNA. Methods in Molecular Biology, 567, 249–261.Google Scholar
  119. 119.
    Wu, A. R., Hiatt, J. B., Lu, R., Attema, J. L., Lobo, N. A., Weissman, I. L., et al. (2009). Automated microfluidic chromatin immunoprecipitation from 2, 00 cells. Lab Chip, 9, 1365–1370.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Basic Medical Sciences, Faculty of Medicine, Norwegian Center for Stem Cell ResearchUniversity of OsloOsloNorway

Personalised recommendations