Molecular Biotechnology

, 44:8 | Cite as

DNA Chip Analysis in Diverse Organisms with Unsequenced Genomes

Research

Abstract

Whether for basic research or biotechnology, DNA microarrays have become indispensable tools for studying the transcriptome. Normally, analyses begin with a set of known cDNA sequences to prepare microarray chips specific for a target organism with an extensively sequenced and annotated genome. For many organisms, however, genome programs are not complete or have not been initiated. The present study demonstrates that, whether using homologous or heterologous arrays, the chances of seeing interesting differences are similar. When a specific DNA microarray is not available, the results indicate that a reverse approach based on a heterologous array can be used to probe for interesting differences in gene expression. This may be sufficient in many studies but, if necessary, the genes exhibiting the most significant changes subsequently could be identified by traditional molecular approaches. Such a reverse strategy can provide a convenient and inexpensive approach to probe for significant genetic changes in many diverse studies, to monitor or mine critical biological information for basic or applied research, long before complete sequence data are available.

Keywords

Genome Gene expression Biodiversity 

References

  1. 1.
    Stoughton, R. B. (2005). Application of DNA microarrays in biology. Annual Review of Biochemistry, 74, 53–82.CrossRefGoogle Scholar
  2. 2.
    Rensink, W. A., & Buell, C. R. (2005). Microarray expression profiling resources for plant genomes. Trends in Plant Science, 10, 603–609.CrossRefGoogle Scholar
  3. 3.
    Lawrence, S. D., Dervinis, C., Novak, N., & Davis, J. M. (2006). Wound and insect herbivory responsive genes in poplar. Biotechnological Letters, 28, 1493–1501.CrossRefGoogle Scholar
  4. 4.
    Bae, J. W., & Park, Y. H. (2006). Homogeneous versus heterogeneous probes for microbial ecological microarrays. Trends in Biotechnology, 24, 318–323.CrossRefGoogle Scholar
  5. 5.
    Gentry, T. J., Wickham, G. S., Schadt, C. W., He, Z., & Zhou, J. (2006). Microarray applications in microbial ecology research. Microbial Ecology, 52, 159–175.CrossRefGoogle Scholar
  6. 6.
    Ju, Z., Wells, M. C., & Walter, R. B. (2007). DNA microarray technology in toxicogenomics of aquatic models: methods and applications. Comparitive Biochemistry and Physiology Part C: Toxicology and Pharmacology, 145, 5–14.CrossRefGoogle Scholar
  7. 7.
    Wagner, M., Smidt, H., Loy, A., & Zhou, J. (2007). Unravelling microbial communities with DNA microarrays: challenges and future directions. Microbial Ecology, 53, 498–506.CrossRefGoogle Scholar
  8. 8.
    Becher, M., Talke, I. N., Krall, L., & Kramer, U. (2004). Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant Journal, 37, 251–268.Google Scholar
  9. 9.
    Wang, Z., Dooley, T. P., Curto, E. V., Davis, R. L., & VandeBerg, J. L. (2004). Cross-species application of cDNA microarrays to profile gene expression using UV-induced melanoma in Monodelphis domestica as the model system. Genomics, 83, 588–599.CrossRefGoogle Scholar
  10. 10.
    Nuzhdin, S. V., Wayne, M. L., Harmon, K. L., & McIntyre, L. M. (2004). Common pattern of evolution of gene expression level and protein sequence in Drosophila. Molecular Biology and Evolution, 21, 1308–1317.CrossRefGoogle Scholar
  11. 11.
    Gilad, Y., Oshlack, A., Smyth, G. K., Speed, T. P., & White, K. P. (2006). Expression profiling in primates reveals a rapid evolution of human transcription factors. Nature, 440, 242–245.CrossRefGoogle Scholar
  12. 12.
    Moore, S., Payton, P., Wright, M., Tanksley, S., & Giovannoni, J. (2005). Utilization of tomato microarrays for comparative gene expression analysis in the Solanaceae. Journal of Experimental Botany, 56, 2885–2895.CrossRefGoogle Scholar
  13. 13.
    Belosludtsev, Y. Y., Bowerman, D., Weil, R., Marthandan, N., Balog, R., Luebke, K., et al. (2004). Organism identification using a genome sequence-independent universal microarray probe set. Biotechniques, 3, 654–660.Google Scholar
  14. 14.
    Diehl, S., Diehl, F., El-Sayed, N. M., Clayton, C., & Hoheisel, J. D. (2002). Analysis of stagespecific gene expression in the bloodstream and the procyclic form of Trypanosoma brucei using a genomic DNA-microarray. Molecular and Biochemical Parasitology, 123, 115–123.CrossRefGoogle Scholar
  15. 15.
    Kim, B. C., Park, J. H., & Gu, M. B. (2004). Development of a DNA microarray chip for the identification of sludge bacteria using an unsequenced random genomic hybridization method. Environmental Science and Technology, 38, 6767–6774.CrossRefGoogle Scholar
  16. 16.
    Muffler, A., Bettermann, S., Haushalter, M., Horlein, A., Neveling, U., Schramm, M., et al. (2002). Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. Journal of Biotechnology, 98, 255–268.CrossRefGoogle Scholar
  17. 17.
    Robb, J., Lee, B., & Nazar, R. N. (2007). Gene suppression in a tolerant tomato-vascular pathogen interaction. Planta, 226, 209–309.CrossRefGoogle Scholar
  18. 18.
    Heinz, R., Lee, S.-W., Saparno, A., Nazar, R. N., & Robb, J. (1998). Cyclical systemic colonization in Verticillium-infected tomato. Physiological and Molecular Plant Pathology, 52, 385–396.CrossRefGoogle Scholar
  19. 19.
    Francioso, F., Carinci, F., Tosi, L., Scapoli, L., Pezzetti, F., Passerella, E., et al. (2002). Identification of differentially expressed genes in human salivary gland tumors by DNA microarrays. Molecular Cancer Therapeutics, 1, 533–538.Google Scholar
  20. 20.
    Chan, K. Y.-Y., Wong, N., Lai, P. B.-S., Squire, J. A., Macgregor, P. F., Beheshti, B., et al. (2005). Transcriptional profiling on chromosome 19p indicated frequent downregulation of ACP5 expression in hepatocellular carcinoma. International Journal of Cancer, 114, 902–908.CrossRefGoogle Scholar
  21. 21.
    Zhang, S., & Klessig, D. F. (2001). MAPK cascades in plant defense signaling. Trends in Plant Science, 6, 520–527.CrossRefGoogle Scholar
  22. 22.
    Marrs, K. A. (1996). The functions and regulation of glutathione S-transferases in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 127–158.CrossRefGoogle Scholar
  23. 23.
    Bednarek, S. Y., & Raikhel, N. V. (1991). The barley lectin carboxyl-terminal propeptide is a vacuolar protein sorting determinant in plants. Plant Cell, 3, 1195–1206.CrossRefGoogle Scholar
  24. 24.
    Sano, H., & Ohashi, Y. (1995). Involvement of small GTP-binding proteins in defense signal-transduction pathways of higher plants. Proceedings of the National Academy of Sciences of the United States of America, 92, 4138–4144.CrossRefGoogle Scholar
  25. 25.
    Bar-Or, C., Czosnek, H., & Koltai, H. (2007). Cross-species microarray hybridizations: a developing tool for studying species diversity. Trends in Genetics, 23, 200–207.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Ross N. Nazar
    • 1
  • Ping Chen
    • 1
  • Doug Dean
    • 1
  • Jane Robb
    • 1
  1. 1.Department of Molecular and Cellular BiologyUniversity of GuelphGuelphCanada

Personalised recommendations