Advertisement

Molecular Biotechnology

, 44:22 | Cite as

Genomics of Helper Component Proteinase Reveals Effective Strategy for Papaya Ringspot Virus Resistance

  • Satendra K. Mangrauthia
  • Priyanka Singh
  • Shelly Praveen
Research

Abstract

Papaya ringspot virus (PRSV) causes severe economic losses in both cucurbits and papaya throughout the tropics and subtropics. Development of PRSV-resistant transgenic plants faces a major hurdle in achieving resistance against geographically distinct isolates. One of the major reasons of failing to achieve the broad-spectrum PRSV resistance is the involvement of silencing suppressor proteins of viral origin. Here, based on sequence profile of silencing suppressor protein, HcPro, we show that PRSV-HcPro, acts as a suppressor of RNA silencing through micro RNA binding in a dose- dependent manner. In planta expression of PRSV-HcPro affects developmental biology of plants, suggesting the interference of suppressor protein in micro RNA-directed regulatory pathways of plants. Besides facilitating the establishment of PRSV, it showed strong positive synergism with other heterologous viruses as well. This study provides a strategy to develop effective and stable PRSV-resistant transgenic plants.

Keywords

Silencing suppressor Potyvirus miRNA HcPro Electrophoretic mobility shift assay 

Notes

Acknowledgments

Satendra K. Mangrauthia was supported by a fellowship from Council of Scientific & Industrial Research (CSIR), New Delhi. Financial support by Department of Biotechnology, Govt. of India is highly acknowledged. Authors are thankful to Ms. Mansi for her useful suggestions in manuscript preparation.

References

  1. 1.
    Purcifull, D. E., Edwardson, J. R., Hiebert, E., & Gonsalves, D. (1984). Papaya ringspot virus. CMI/AAB description of plant viruses. No.292. Wallingford, UK: CAB International.Google Scholar
  2. 2.
    Urcuqui-Inchima, S., Haenni, A. L., & Bernardi, F. (2001). Potyvirus proteins: A wealth of functions. Virus Research, 74, 157–175.CrossRefGoogle Scholar
  3. 3.
    Lius, S., Manshardt, R. M., Fitch, M. M. M., Slightom, J. L., Sanford, J. C., & Gonsalves, D. (1997). Pathogen-derived resistance provides papaya with effective protection against papaya ringspot virus. Molecular Breeding, 3, 161–168.CrossRefGoogle Scholar
  4. 4.
    Gonsalves, D. (1998). Control of papaya ringspot virus in papaya: A case study. Annual Review of Phytopathology, 36, 415–437.CrossRefGoogle Scholar
  5. 5.
    Chiang, C. H., Wang, J. J., Jan, F. J., Yeh, S. D., & Gonsalves, D. (2001). Comparative reactions of recombinant papaya ringspot viruses with chimeric coat protein (CP) genes and wild-type viruses on CP-transgenic papaya. Journal of General Virology, 82, 2827–2836.Google Scholar
  6. 6.
    Tripathi, S., Bau, H.-J., Chen, L.-F., & Yeh, S. D. (2004). The ability of Papaya ringspot virus strains overcoming the transgenic resistance of papaya conferred by the coat protein gene is not correlated with higher degrees of sequence divergence from the transgene. European Journal of Plant Pathology, 110, 871–882.CrossRefGoogle Scholar
  7. 7.
    Ruanjan, P., Kertbundit, S., & Juricek, M. (2007). Post-transcriptional gene silencing is involved in resistance of transgenic papayas to papaya ringspot virus. Biologia Plantarum, 51, 517–520.CrossRefGoogle Scholar
  8. 8.
    Ramesh, S. V., Mishra, A. K., & Praveen, S. (2007). Hairpin RNA mediated strategies for silencing of Tomato leaf curl virus AC1 and AC4 genes for effective resistance in plants. Oligonucleotide, 17, 251–257.CrossRefGoogle Scholar
  9. 9.
    Praveen, S., & Mangrauthia, S. K. (2006). Viral suppressors: Small RNAs regulators. Indian Journal of Virology, 17, 62–77.Google Scholar
  10. 10.
    Ding, S. W., & Voinnet, O. (2007). Antiviral immunity directed by small RNAs. Cell, 130, 413–426.CrossRefGoogle Scholar
  11. 11.
    Praveen, S., Mangrauthia, S. K., Singh, P., & Mishra, A. K. (2008). Behavior of RNAi suppressor protein 2b of Cucumber mosaic virus in planta in presence and absence of virus. Virus Genes, 37, 96–102.CrossRefGoogle Scholar
  12. 12.
    Anandlakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H., et al. (1998). A viral suppressor of gene silencing in plant. Proceedings of the National Academy of Sciences of the United States of America, 95, 13079–13084.CrossRefGoogle Scholar
  13. 13.
    Mangrauthia, S. K., Jain, R. K., & Praveen, S. (2008). Sequence motifs comparisons establish a functional portrait of a multifunctional protein HC-Pro from Papaya Ringspot Potyvirus. Journal of Plant Biochemistry and Biotechnology, 17, 201–204.Google Scholar
  14. 14.
    Pruss, G. J., Ge, X., Shi, X. M., Carrington, J. C., & Bownman, V. V. (1997). Plant viral synergism: The potyviral genome encoded a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. The Plant Cell, 9, 859–868.CrossRefGoogle Scholar
  15. 15.
    Yap, Y.-K., Duangjit, J., & Panyim, S. (2009). N-terminal of Papaya ringspot virus type-W (PRSV-W) helper component proteinase (HcPro) is essential for PRSV systemic infection in zucchini. Virus Genes, 38, 461–467. doi: 10.1007/s1262-009-0348-z.CrossRefGoogle Scholar
  16. 16.
    Dunoyer, P., Lecellier, C. H., Parizotto, E. A., Himber, C., & Voinnet, O. (2004). Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell, 16, 1235–1250.CrossRefGoogle Scholar
  17. 17.
    Tripathi, S., Suzuki, J. Y., Ferreira, S. A., & Gonsalves, D. (2008). Papaya ringspot virus-P: Characteristics, pathogenicity, sequence variability and control. Molecular Plant Pathology, 9, 269–280.CrossRefGoogle Scholar
  18. 18.
    Hall, T. A. (1999). BioEdit: A user friendly biological sequence alignment editor and analysis programs for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  19. 19.
    Hofgen, R., & Willmitzer, L. (1988). Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research, 16, 9877.CrossRefGoogle Scholar
  20. 20.
    McCormick, S. (1991). Transformation of tomato with Agrobacterium tumefaciens. In: Lindsey, K.(ed.): Plant tissue culture manual. B6, 1-9. Kluwer Academic Publishers, The Netherlands.Google Scholar
  21. 21.
    Agarwal, S., Reddy, M. K., & Jain, R. K. (2009). Production of polyclonal antibodies using recombinant coat protein of papaya ringspot virus and their use in immunodiagnosis. Journal of Plant Biochemistry and Biotechnology, 18, 109–111.Google Scholar
  22. 22.
    Landt, O. (2001). Selection of hybridization probes for real-time quantification and genetic analysis. In S. Meuer, C. Wittwer, & K. Nakagawara (Eds.), Rapid cycle real-time PCR, methods and applications (pp. 35–41). Heidelberg-Germany: Springer.Google Scholar
  23. 23.
    Elbashir, S. M., Lendeckel, W., & Tuschl, T. (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes and Development, 15, 188–200.CrossRefGoogle Scholar
  24. 24.
    Selth, L. A., Randles, J. W., & Rezaian, M. A. (2004). Host responses to transient expression of individual genes encoded by Tomato leaf curl virus. Molecular Plant-Microbe Interactions, 17, 27–33.CrossRefGoogle Scholar
  25. 25.
    Gonzalez-Jara, P., Tenllado, F., Martinez-Garcia, B., Atencio, F. A., Barajas, D., Vargas, M., et al. (2004). Host dependent differences during synergistic infection by potyvirus with Potato virus X. Molecular Plant Pathology, 5, 29–35.CrossRefGoogle Scholar
  26. 26.
    Shi, B. J., Ding, S. W., & Symons, R. H. (1997). In vivo expression of an overlapping gene encoded by the cucumoviruses. Journal of General Virology, 78, 237–241.Google Scholar
  27. 27.
    Mlotshwa, S., Schauer, S. E., Smith, T. H., Mallory, A. C., Herr, J. M., Roth, B., et al. (2005). Ectopic DICER-LIKE1 expression in P1/HcPro Arabidopsis rescues phenotypic anomalies but not defects in microRNA and silencing pathways. Plant Cell, 17, 2873–2885.CrossRefGoogle Scholar
  28. 28.
    Thornbury, D. W., Van Den Heuvel, J. F. J. H., Lesnaw, J. A., & Pirone, T. P. (1993). Expression of potyvirus proteins in insect cells infected with a recombinant baculovirus. Journal of General Virology, 74, 2731–2735.CrossRefGoogle Scholar
  29. 29.
    Lakatos, L., Csorba, T., Pantaleo, V., Chapman, E. J., Carrington, J. C., Liu, Y. P., et al. (2006). Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO Journal, 25, 2768–2780.CrossRefGoogle Scholar
  30. 30.
    Merai, Z., Kerenyi, Z., Kertesz, S., Magna, M., Lakatos, L., & Silhavy, D. (2006). Double-stranded RNA binding may be a general plant viral strategy to suppress RNA silencing. Journal of Virology, 80, 5747–5756.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Satendra K. Mangrauthia
    • 1
  • Priyanka Singh
    • 2
  • Shelly Praveen
    • 2
  1. 1.Plant Pathology Section, Directorate of Rice ResearchHyderabadIndia
  2. 2.Division of Plant PathologyIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations