Molecular Biotechnology

, 43:243 | Cite as

Potato Virus X Coat Protein Fusion to Human Papillomavirus 16 E7 Oncoprotein Enhance Antigen Stability and Accumulation in Tobacco Chloroplast

  • Mauro Morgenfeld
  • María Eugenia Segretin
  • Sonia Wirth
  • Ezequiel Lentz
  • Alicia Zelada
  • Alejandro Mentaberry
  • Lutz Gissmann
  • Fernando Bravo-Almonacid
Research

Abstract

Cervical cancer linked to infection with human papillomavirus (HPV) is the third cause of cancer-related death in women. As the virus cannot be propagated in culture, vaccines have been based on recombinant antigens with inherited high-cost production. In a search of alternative cheap production system, E7 HPV type 16 protein, an attractive candidate for anticancer vaccine development, was engineered to be expressed in tobacco chloroplast. In addition, E7 coding sequence was fused to potato virus X coat protein (CP) to compare expression level. Results show that E7CP transcript accumulation reached lower levels than non-fused E7. However, antigen expression levels were higher for fusion protein indicating that CP stabilizes E7 peptide in the chloroplast stroma. These results support viability of transplastomic plants for antigen production and the relevance of improving recombinant peptide stability for certain transgenes to enhance protein accumulation in this organelle.

Keywords

Human papillomavirus (HPV) E7 antigen Fusion protein Chloroplast transformation Transplastomic tobacco Molecular farming 

References

  1. 1.
    Spok, A., Twyman, R. M., Fischer, R., Ma, J. K., & Sparrow, P. A. (2008). Evolution of a regulatory framework for pharmaceuticals derived from genetically modified plants. Trends in Biotechnology, 26, 506–517.CrossRefGoogle Scholar
  2. 2.
    Streatfield, S. J., & Howard, J. A. (2003). Plant production systems for vaccines. Expert Review of Vaccines, 2, 763–775.CrossRefGoogle Scholar
  3. 3.
    Floss, D. M., Falkenburg, D., & Conrad, U. (2007). Production of vaccines and therapeutic antibodies for veterinary applications in transgenic plants: an overview. Transgenic Research, 16, 315–332.CrossRefGoogle Scholar
  4. 4.
    Maliga, P. (2004). Plastid transformation in higher plants. Annual Review of Plant Biology, 55, 289–313.CrossRefGoogle Scholar
  5. 5.
    Verma, D., & Daniell, H. (2007). Chloroplast vector systems for biotechnology applications. Plant Physiology, 145, 1129–1143.CrossRefGoogle Scholar
  6. 6.
    Bock, R. (2007). Plastid biotechnology: Prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Current Opinion in Biotechnology, 18, 100–106.CrossRefGoogle Scholar
  7. 7.
    Fernandez-San Millan, A., Farran, I., Molina, A., Mingo-Castel, A. M., & Veramendi, J. (2007). Expression of recombinant proteins lacking methionine as N-terminal amino acid in plastids: human serum albumin as a case study. Journal of Biotechnology, 127, 593–604.CrossRefGoogle Scholar
  8. 8.
    Daniell, H. (2006). Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnology Journal, 1, 1071–1079.CrossRefGoogle Scholar
  9. 9.
    Rybicki, E. P. (2009). Plant-produced vaccines: Promise and reality. Drug Discovery Today, 14, 16–24.CrossRefGoogle Scholar
  10. 10.
    Molina, A., Veramendi, J., & Hervas-Stubbs, S. (2005). Induction of neutralizing antibodies by a tobacco chloroplast-derived vaccine based on a B cell epitope from canine parvovirus. Virology, 342, 266–275.CrossRefGoogle Scholar
  11. 11.
    Chebolu, S., & Daniell, H. (2007). Stable expression of Gal/GalNAc lectin of Entamoeba histolytica in transgenic chloroplasts and immunogenicity in mice towards vaccine development for amoebiasis. Plant Biotechnology Journal, 5, 230–239.CrossRefGoogle Scholar
  12. 12.
    Castellsague, X. (2008). Natural history and epidemiology of HPV infection and cervical cancer. Gynecologic Oncology, 110, S4–S7.CrossRefGoogle Scholar
  13. 13.
    Koutsky, L. A., Ault, K. A., Wheeler, C. M., Brown, D. R., Barr, E., Alvarez, F. B., et al. (2002). A controlled trial of a human papillomavirus type 16 vaccine. New England Journal of Medicine, 347, 1645–1651.Google Scholar
  14. 14.
    Hallez, S., Simon, P., Maudoux, F., Doyen, J., Noel, J. C., Beliard, A., et al. (2004). Phase I/II trial of immunogenicity of a human papillomavirus (HPV) type 16 E7 protein-based vaccine in women with oncogenic HPV-positive cervical intraepithelial neoplasia. Cancer Immunology, Immunotherapy, 53, 642–650.CrossRefGoogle Scholar
  15. 15.
    Roman, L. D., Wilczynski, S., Muderspach, L. I., Burnett, A. F., O’Meara, A., Brinkman, J. A., et al. (2007). A phase II study of Hsp-7 (SGN-00101) in women with high-grade cervical intraepithelial neoplasia. Gynecologic Oncology, 106, 558–566.CrossRefGoogle Scholar
  16. 16.
    Trimble, C. L., Peng, S., Kos, F., Gravitt, P., Viscidi, R., Sugar, E., et al. (2009). A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clinical Cancer Research, 15, 361–367.CrossRefGoogle Scholar
  17. 17.
    Gerard, C. M., Baudson, N., Kraemer, K., Bruck, C., Garcon, N., Paterson, Y., et al. (2001). Therapeutic potential of protein and adjuvant vaccinations on tumour growth. Vaccine, 19, 2583–2589.CrossRefGoogle Scholar
  18. 18.
    Franconi, R., Di Bonito, P., Dibello, F., Accardi, L., Muller, A., Cirilli, A., et al. (2002). Plant-derived human papillomavirus 16 E7 oncoprotein induces immune response and specific tumor protection. Cancer Research, 62, 3654–3658.Google Scholar
  19. 19.
    Massa, S., Franconi, R., Brandi, R., Muller, A., Mett, V., Yusibov, V., et al. (2007). Anti-cancer activity of plant-produced HPV16 E7 vaccine. Vaccine, 25, 3018–3021.CrossRefGoogle Scholar
  20. 20.
    Massa, S., Simeone, P., Muller, A., Benvenuto, E., Venuti, A., & Franconi, R. (2008). Antitumor activity of DNA vaccines based on the human papillomavirus-16 E7 protein genetically fused to a plant virus coat protein. Human Gene Therapy, 19, 354–364.CrossRefGoogle Scholar
  21. 21.
    Wirth, S., Segretin, M. E., Mentaberry, A., & Bravo-Almonacid, F. (2006). Accumulation of hEGF and hEGF-fusion proteins in chloroplast-transformed tobacco plants is higher in the dark than in the light. Journal of Biotechnology, 125, 159–172.CrossRefGoogle Scholar
  22. 22.
    Daniell, H. (1997). Transformation and foreign gene expression in plants by microprojectile bombardment. Methods in Molecular Biology, 62, 463–489.Google Scholar
  23. 23.
    Cséplő, A., & Maliga, P. (1984). Large scale isolation of maternally inherited lincomycin resistance mutations, in diploid Nicotiana plumbaginifolia protoplast cultures. Molecular and General Genetics, 196, 407–412.CrossRefGoogle Scholar
  24. 24.
    Dellaporta, S., Wood, J., & Hicks, J. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1, 19–21.CrossRefGoogle Scholar
  25. 25.
    Church, G. M., & Gilbert, W. (1984). Genomic sequencing. Proceedings of the National Academy of Sciences of the United States of America, 81, 1991–1995.CrossRefGoogle Scholar
  26. 26.
    Braspenning, J., Manetti, R., Zumbach, K., Meschede, W., Gissmann, L., & Tommasino, M. (1997). A general purification protocol for E7 proteins from “high- and low-risk” human papillomavirus types expressed in the yeast Schizosaccharomyces pombe. Protein Expression and Purification, 10, 192–201.CrossRefGoogle Scholar
  27. 27.
    Pahel, G., Aulabaugh, A., Short, S. A., Barnes, J. A., Painter, G. R., Ray, P., et al. (1993). Structural and functional characterization of the HPV16 E7 protein expressed in bacteria. Journal of Biological Chemistry, 268, 26018–26025.Google Scholar
  28. 28.
    Daniell, H., Ruiz, G., Denes, B., Sandberg, L., & Langridge, W. (2009). Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-1 in transgenic chloroplasts and evaluation of structural identity and function. BMC Biotechnology, 9, 33.CrossRefGoogle Scholar
  29. 29.
    Yu, L. X., Gray, B. N., Rutzke, C. J., Walker, L. P., Wilson, D. B., & Hanson, M. R. (2007). Expression of thermostable microbial cellulases in the chloroplasts of nicotine-free tobacco. Journal of Biotechnology, 131, 362–369.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Mauro Morgenfeld
    • 1
    • 2
  • María Eugenia Segretin
    • 1
    • 2
  • Sonia Wirth
    • 1
    • 2
  • Ezequiel Lentz
    • 1
  • Alicia Zelada
    • 1
    • 2
  • Alejandro Mentaberry
    • 1
    • 2
  • Lutz Gissmann
    • 3
  • Fernando Bravo-Almonacid
    • 1
  1. 1.Instituto de Ingeniería Genética y Biología Molecular (INGEBI-CONICET)Ciudad Autónoma de Buenos AiresArgentina
  2. 2.Departamento de Fisiología Biología Molecular y Celular (FCEN-UBA)Ciudad Universitaria, Buenos AiresArgentina
  3. 3.Department of Genome Modifications and CarcinogenesisGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations