Molecular Biotechnology

, Volume 42, Issue 2, pp 216–223 | Cite as

Protein and Genome Evolution in Mammalian Cells for Biotechnology Applications

  • Brian S. Majors
  • Gisela G. Chiang
  • Michael J. Betenbaugh
Review

Abstract

Mutation and selection are the essential steps of evolution. Researchers have long used in vitro mutagenesis, expression, and selection techniques in laboratory bacteria and yeast cultures to evolve proteins with new properties, termed directed evolution. Unfortunately, the nature of mammalian cells makes applying these mutagenesis and whole-organism evolution techniques to mammalian protein expression systems laborious and time consuming. Mammalian evolution systems would be useful to test unique mammalian cell proteins and protein characteristics, such as complex glycosylation. Protein evolution in mammalian cells would allow for generation of novel diagnostic tools and designer polypeptides that can only be tested in a mammalian expression system. Recent advances have shown that mammalian cells of the immune system can be utilized to evolve transgenes during their natural mutagenesis processes, thus creating proteins with unique properties, such as fluorescence. On a more global level, researchers have shown that mutation systems that affect the entire genome of a mammalian cell can give rise to cells with unique phenotypes suitable for commercial processes. This review examines the advances in mammalian cell and protein evolution and the application of this work toward advances in commercial mammalian cell biotechnology.

Keywords

Directed evolution Protein engineering Mammalian cell culture Somatic hypermutation Cellular engineering 

References

  1. 1.
    Wang, T. W., Zhu, H., Ma, X. Y., Zhang, T., Ma, Y. S., & Wei, D. Z. (2006). Mutant library construction in directed molecular evolution: casting a wider net. Molecular Biotechnology, 34, 55–68. doi:10.1385/MB:34:1:55.CrossRefGoogle Scholar
  2. 2.
    Lutz, S., & Patrick, W. M. (2004). Novel methods for directed evolution of enzymes: quality, not quantity. Current Opinion in Biotechnology, 15, 291–297. doi:10.1016/j.copbio.2004.05.004.CrossRefGoogle Scholar
  3. 3.
    Arakawa, H., Kudo, H., Batrak, V., Caldwell, R. B., Rieger, M. A., Ellwart, J. W., et al. (2008). Protein evolution by hypermutation and selection in the B cell line DT40. Nucleic Acids Research, 36, e1. doi:10.1093/nar/gkm616.CrossRefGoogle Scholar
  4. 4.
    Wurm, F. M. (2004). Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology, 22, 1393–1398. doi:10.1038/nbt1026.CrossRefGoogle Scholar
  5. 5.
    Matsuura, T., & Yomo, T. (2006). In vitro evolution of proteins. Journal of Bioscience and Bioengineering, 101, 449–456. doi:10.1263/jbb.101.449.CrossRefGoogle Scholar
  6. 6.
    Orencia, M. C., Yoon, J. S., Ness, J. E., Stemmer, W. P., & Stevens, R. C. (2001). Predicting the emergence of antibiotic resistance by directed evolution and structural analysis. Nature Structural Biology, 8, 238–242. doi:10.1038/84981.CrossRefGoogle Scholar
  7. 7.
    Stefan, A., Radeghieri, A., Gonzalez Vara y Rodriguez, A., & Hochkoeppler, A. (2001). Directed evolution of beta-galactosidase from Escherichia coli by mutator strains defective in the 3’– > 5’ exonuclease activity of DNA polymerase III. FEBS Letters, 493, 139–143. doi:10.1016/S0014-5793(01)02293-1.CrossRefGoogle Scholar
  8. 8.
    Aharoni, A., Gaidukov, L., Yagur, S., Toker, L., Silman, I., & Tawfik, D. S. (2004). Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization. Proceedings of the National Academy of Sciences of the United States of America, 101, 482–487. doi:10.1073/pnas.2536901100.CrossRefGoogle Scholar
  9. 9.
    Kumar, S., Chen, C. S., Waxman, D. J., & Halpert, J. R. (2005). Directed evolution of mammalian cytochrome P450 2B1: mutations outside of the active site enhance the metabolism of several substrates, including the anticancer prodrugs cyclophosphamide and ifosfamide. The Journal of Biological Chemistry, 280, 19569–19575. doi:10.1074/jbc.M500158200.CrossRefGoogle Scholar
  10. 10.
    Kwaks, T. H., & Otte, A. P. (2006). Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells. Trends in Biotechnology, 24, 137–142. doi:10.1016/j.tibtech.2006.01.007.CrossRefGoogle Scholar
  11. 11.
    Wang, C. L., Yang, D. C., & Wabl, M. (2004). Directed molecular evolution by somatic hypermutation. Protein Engineering, Design & Selection, 17, 659–664. doi:10.1093/protein/gzh080.CrossRefGoogle Scholar
  12. 12.
    Wang, L., Jackson, W. C., Steinbach, P. A., & Tsien, R. Y. (2004). Evolution of new nonantibody proteins via iterative somatic hypermutation. Proceedings of the National Academy of Sciences of the United States of America, 101, 16745–16749. doi:10.1073/pnas.0407752101.CrossRefGoogle Scholar
  13. 13.
    Yang, N., & Kazazian, H. H., Jr. (2006). L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nature Structural & Molecular Biology, 13, 763–771. doi:10.1038/nsmb1141.CrossRefGoogle Scholar
  14. 14.
    Rajewsky, K., Forster, I., & Cumano, A. (1987). Evolutionary and somatic selection of the antibody repertoire in the mouse. Science, 238, 1088–1094. doi:10.1126/science.3317826.CrossRefGoogle Scholar
  15. 15.
    Li, Z., Woo, C. J., Iglesias-Ussel, M. D., Ronai, D., & Scharff, M. D. (2004). The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes & Development, 18, 1–11. doi:10.1101/gad.1161904.CrossRefGoogle Scholar
  16. 16.
    Peled, J. U., Kuang, F. L., Iglesias-Ussel, M. D., Roa, S., Kalis, S. L., Goodman, M. F., et al. (2008). The Biochemistry of Somatic Hypermutation. Annual Review of Immunology, 26, 481–511. doi:10.1146/annurev.immunol.26.021607.090236.CrossRefGoogle Scholar
  17. 17.
    Martin, A., & Scharff, M. D. (2002). AID and mismatch repair in antibody diversification. Nature Reviews. Immunology, 2, 605–614. doi:10.1038/nri799.Google Scholar
  18. 18.
    Cumbers, S. J., Williams, G. T., Davies, S. L., Grenfell, R. L., Takeda, S., Batista, F. D., et al. (2002). Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines. Nature Biotechnology, 20, 1129–1134. doi:10.1038/nbt752.CrossRefGoogle Scholar
  19. 19.
    Bachl, J., Carlson, C., Gray-Schopfer, V., Dessing, M., & Olsson, C. (2001). Increased transcription levels induce higher mutation rates in a hypermutating cell line. Journal of Immunology (Baltimore, MD: 1950), 166, 5051–5057.Google Scholar
  20. 20.
    Storb, U., Peters, A., Klotz, E., Kim, N., Shen, H. M., Hackett, J., et al. (1998). Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunological Reviews, 162, 153–160. doi:10.1111/j.1600-065X.1998.tb01424.x.CrossRefGoogle Scholar
  21. 21.
    Wang, L., & Tsien, R. Y. (2006). Evolving proteins in mammalian cells using somatic hypermutation. Nature Protocols, 1, 1346–1350. doi:10.1038/nprot.2006.243.CrossRefGoogle Scholar
  22. 22.
    Kanayama, N., Todo, K., Takahashi, S., Magari, M., & Ohmori, H. (2006). Genetic manipulation of an exogenous non-immunoglobulin protein by gene conversion machinery in a chicken B cell line. Nucleic Acids Research, 34, e10. doi:10.1093/nar/gnj013.CrossRefGoogle Scholar
  23. 23.
    Yomano, L. P., York, S. W., & Ingram, L. O. (1998). Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. Journal of Industrial Microbiology & Biotechnology, 20, 132–138. doi:10.1038/sj.jim.2900496.CrossRefGoogle Scholar
  24. 24.
    Keating, J. D., Panganiban, C., & Mansfield, S. D. (2006). Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnology and Bioengineering, 93, 1196–1206. doi:10.1002/bit.20838.CrossRefGoogle Scholar
  25. 25.
    Matsumura, M., Shimoda, M., Arii, T., & Kataoka, H. (1991). Adaptation of hybridoma cells to higher ammonia concentration. Cytotechnology, 7, 103–112.Google Scholar
  26. 26.
    Prentice, H. L., Ehrenfels, B. N., & Sisk, W. P. (2007). Improving Performance of Mammalian Cells in Fed-Batch Processes through “Bioreactor Evolution”. Biotechnology Progress, 23, 458–464.CrossRefGoogle Scholar
  27. 27.
    al-Rubeai, M., & Singh, R. P. (1998). Apoptosis in cell culture. Current Opinion in Biotechnology, 9, 152–156. doi:10.1016/S0958-1669(98)80108-0.CrossRefGoogle Scholar
  28. 28.
    Perani, A., Singh, R. P., Chauhan, R., & Al-Rubeai, M. (1998). Variable functions of bcl-2 in mediating bioreactor stress- induced apoptosis in hybridoma cells. Cytotechnology, 28, 12. doi:10.1023/A:1008002319400.CrossRefGoogle Scholar
  29. 29.
    Sonna, L. A., Fujita, J., Gaffin, S. L., & Lilly, C. M. (2002). Invited review: Effects of heat and cold stress on mammalian gene expression. J Appl Physiol, 92, 1725–1742.Google Scholar
  30. 30.
    Chu, E. H. (1983). Mutation systems in cultured mammalian cells. Annals of the New York Academy of Sciences, 407, 221–230. doi:10.1111/j.1749-6632.1983.tb47827.x.CrossRefGoogle Scholar
  31. 31.
    Carabeo, R. A., & Hackstadt, T. (2001). Isolation and characterization of a mutant Chinese hamster ovary cell line that is resistant to Chlamydia trachomatis infection at a novel step in the attachment process. Infection and Immunity, 69, 5899–5904. doi:10.1128/IAI.69.9.5899-5904.2001.CrossRefGoogle Scholar
  32. 32.
    Urlaub, G., & Chasin, L. A. (1980). Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proceedings of the National Academy of Sciences of the United States of America, 77, 4216–4220. doi:10.1073/pnas.77.7.4216.CrossRefGoogle Scholar
  33. 33.
    Chiang, G. G., & Sisk, W. P. (2005). Bcl-x(L) mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Biotechnology and Bioengineering, 91, 779–792. doi:10.1002/bit.20551.CrossRefGoogle Scholar
  34. 34.
    Nicolaides, N. C., Ebel, W., Kline, B., Chao, Q., Routhier, E., Sass, P. M., et al. (2005). Morphogenics as a tool for target discovery and drug development. Annals of the New York Academy of Sciences, 1059, 86–96. doi:10.1196/annals.1339.029.CrossRefGoogle Scholar
  35. 35.
    Radha, S., & Natarajan, A. T. (1998). Sodium arsenite-induced chromosomal aberrations in the Xq arm of Chinese hamster cell lines. Mutagenesis, 13, 229–234. doi:10.1093/mutage/13.3.229.CrossRefGoogle Scholar
  36. 36.
    Aebi, S., Kurdi-Haidar, B., Gordon, R., Cenni, B., Zheng, H., Fink, D., et al. (1996). Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Research, 56, 3087–3090.Google Scholar
  37. 37.
    Nicolaides, N. C., Littman, S. J., Modrich, P., Kinzler, K. W., & Vogelstein, B. (1998). A naturally occurring hPMS2 mutation can confer a dominant negative mutator phenotype. Molecular and Cellular Biology, 18, 1635–1641.Google Scholar
  38. 38.
    Grasso, L., Kline, J., Chao, Q., Routhier, E., Ebel, W., Sass, P. M., et al. (2004). Enhancing Therapeutic Antibodies and Titer Yields of Mammalian Cell Lines. BioProcess International, 2, 58–64.Google Scholar
  39. 39.
    Chapman, S., Oparka, K. J., & Roberts, A. G. (2005). New tools for in vivo fluorescence tagging. Current Opinion in Plant Biology, 8, 565–573. doi:10.1016/j.pbi.2005.09.011.CrossRefGoogle Scholar
  40. 40.
    Loening, A. M., Wu, A. M., & Gambhir, S. S. (2007). Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nature Methods, 4, 641–643. doi:10.1038/nmeth1070.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Brian S. Majors
    • 1
    • 3
  • Gisela G. Chiang
    • 2
  • Michael J. Betenbaugh
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Cellular Engineering, Biogen Idec, Inc., 14 Cambridge CenterCambridgeUSA
  3. 3.Cellular Engineering, Biogen Idec, Inc., 14 Cambridge CenterCambridgeUSA

Personalised recommendations