Molecular Biotechnology

, Volume 41, Issue 3, pp 236–246

Comparison of Caspase Genes for the Induction of Apoptosis Following Gene Delivery



The polycation poly(ethylenimine) (PEI) was used to deliver the plasmids coding for various combinations of caspases to Cox-2 overexpressing cancer cell lines. It was found that the expression of the delivered genes, controlled by the Cox-2 promoter, correlated with the expression of the endogenous Cox-2 gene in each cell line in a relatively linear manner. Among the various caspase combination regimens, the combination of caspase 3 plus caspase 9 proved to be the most effective because of an apparent synergy between the two gene products, and produced phosphatidylserine flipping in addition to fragmentation of genomic DNA. Caspase 1 appeared to work independently of either caspases 3 or 9, as no synergistic effect was observed. Transfections with genes coding for granzyme B and caspase 8 yielded a lesser amount of cell death. The delivery of a combination of caspase genes could be readily moved to in vivo research of bladder and colon cancer treatments, and holds great applicability to a wide array of additional tumor types.


Gene delivery Expression-targeting Caspase Cox-2 Apoptosis Phosphatidylserine 


  1. 1.
    Hernandez-Alcoceba, R., Sangro, B., & Prieto, J. (2006). Gene therapy of liver cancer. World Journal of Gastroenterology, 12, 6085–6097.Google Scholar
  2. 2.
    Vile, R. G., Russell, S. J., & Lemoine, N. R. (2000). Cancer gene therapy: Hard lessons and new courses. Gene Therapy, 7, 2–8. doi:10.1038/ Scholar
  3. 3.
    Kanduc, D., Mittelman, A., Serpico, R., et al. (2002). Cell death: Apoptosis versus necrosis. International Journal of Oncology, 21, 165–170. Review.Google Scholar
  4. 4.
    Steller, H. (1998). Artificial death switches: Induction of apoptosis by chemically induced caspase multimerization. Proceedings of the National Academy of Sciences of the United States of America, 95, 5421–5422. doi:10.1073/pnas.95.10.5421.CrossRefGoogle Scholar
  5. 5.
    Wang, J., Lu, X. X., Chen, D. Z., Li, S. F., & Zhang, L. S. (2004). Herpes simplex virus thymidine kinase and ganciclovir suicide gene therapy for human pancreatic cancer. World Journal of Gastroenterology, 10, 400–403.Google Scholar
  6. 6.
    Eastham, J. A., Chen, S. H., Sehgal, I., et al. (1996). Prostate cancer gene therapy: Herpes simplex virus thymidine kinase gene transduction followed by ganciclovir in mouse and human prostate cancer models. Human Gene Therapy, 7, 515–523. doi:10.1089/hum.1996.7.4-515.CrossRefGoogle Scholar
  7. 7.
    Moriuchi, S., Oligino, T., Krisky, D., et al. (1998). Enhanced tumor cell killing in the presence of ganciclovir by herpes simplex virus type 1 vector-directed coexpression of human tumor necrosis factor-alpha and herpes simplex virus thymidine kinase. Cancer Research, 58, 5731–5737.Google Scholar
  8. 8.
    Sato, T., Yamauchi, N., Sasaki, H., et al. (1998). An apoptosis-inducing gene therapy for pancreatic cancer with a combination of 55-kDa tumor necrosis factor (TNF) receptor gene transfection and mutein TNF administration. Cancer Research, 58, 1677–1683.Google Scholar
  9. 9.
    Katz, M. H., Spivack, D. E., Takimoto, S., et al. (2003). Gene therapy of pancreatic cancer with green fluorescent protein and tumor necrosis factor-related apoptosis-inducing ligand fusion gene expression driven by a human telomerase reverse transcriptase promoter. Annals of Surgical Oncology, 10, 762–772. doi:10.1245/ASO.2003.01.021.CrossRefGoogle Scholar
  10. 10.
    Lin, T., Gu, J., Zhang, L., et al. (2002). Targeted expression of green fluorescent protein/tumor necrosis factor-related apoptosis-inducing ligand fusion protein from human telomerase reverse transcriptase promoter elicits antitumor activity without toxic effects on primary human hepatocytes. Cancer Research, 62, 3620–3625.Google Scholar
  11. 11.
    Kagawa, S., He, C., Gu, J., et al. (2001). Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Research, 61, 3330–3338.Google Scholar
  12. 12.
    Waxman, D. J., & Schwartz, P. S. (2003). Harnessing apoptosis for improved anticancer gene therapy. Cancer Research, 63, 8563–8572.Google Scholar
  13. 13.
    Fan, T. J., Han, L. H., Cong, R. S., & Liang, J. (2005). Caspase family proteases and apoptosis. Acta Biochimica et Biophysica Sinica, 37, 719–727. doi:10.1111/j.1745-7270.2005.00108.x.CrossRefGoogle Scholar
  14. 14.
    Xie, X., Zhao, X., Liu, Y., et al. (2001). Adenovirus-mediated tissue-targeted expression of a caspase-9-based artificial death switch for the treatment of prostate cancer. Cancer Research, 61, 6795–6804.Google Scholar
  15. 15.
    Yamabe, K., Shimizu, S., Ito, T., et al. (1999). Cancer gene therapy using a pro-apoptotic gene, caspase-3. Gene Therapy, 6, 1952–1959. doi:10.1038/ Scholar
  16. 16.
    Nishimura, S., Adachi, M., Ishida, T., et al. (2001). Adenovirus-mediated transfection of caspase-8 augments anoikis and inhibits peritoneal dissemination of human gastric carcinoma cells. Cancer Research, 61, 7009–7014.Google Scholar
  17. 17.
    Shinoura, N., Saito, K., Yoshida, Y., et al. (2000). Adenovirus-mediated transfer of bax with caspase-8 controlled by myelin basic protein promoter exerts an enhanced cytotoxic effect in gliomas. Cancer Gene Therapy, 7, 739–748. doi:10.1038/sj.cgt.7700158.CrossRefGoogle Scholar
  18. 18.
    Fu, Y. G., Qu, Y. J., Wu, K. C., Zhai, H. H., Liu, Z. G., & Fan, D. M. (2003). Apoptosis-inducing effect of recombinant caspase-3 expressed by constructed eucaryotic vector on gastric cell line SGC7901. World Journal of Gastroenterology, 9, 1935–1939.Google Scholar
  19. 19.
    Simmons, D. L., Botting, R. M., & Hla, T. (2004). Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacological Reviews, 56, 387–437. doi:10.1124/pr.56.3.3.CrossRefGoogle Scholar
  20. 20.
    Howe, L. R., Subbaramaiah, K., Brown, A. M., & Dannenberg, A. J. (2001). Cyclooxygenase-2: A target for the prevention and treatment of breast cancer. Endocrine-Related Cancer, 8, 97–114. doi:10.1677/erc.0.0080097.CrossRefGoogle Scholar
  21. 21.
    Trifan, O. C., & Hla, T. (2003). Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. Journal of Cellular and Molecular Medicine, 7, 207–222. doi:10.1111/j.1582-4934.2003.tb00222.x.CrossRefGoogle Scholar
  22. 22.
    Wilson, K. T., Fu, S., Ramanujam, K. S., & Meltzer, S. J. (1998). Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Research, 58, 2929–2934.Google Scholar
  23. 23.
    Shamma, A., Yamamoto, H., Doki, Y., et al. (2000). Up-regulation of cyclooxygenase-2 in squamous carcinogenesis of the esophagus. Clinical Cancer Research, 6, 1229–1238.Google Scholar
  24. 24.
    Rajnakova, A., Moochhala, S., Goh, P. M., & Ngoi, S. (2001). Expression of nitric oxide synthase, cyclooxygenase, and p53 in different stages of human gastric cancer. Cancer Letters, 172, 177–185. doi:10.1016/S0304-3835(01)00645-0.CrossRefGoogle Scholar
  25. 25.
    Ristimäki, A., Honkanen, N., Jänkälä, H., Sipponen, P., & Härkönen, M. (1997). Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Research, 57, 1276–1280.Google Scholar
  26. 26.
    Ferrández, A., Prescott, S., & Burt, R. W. (2003). COX-2 and colorectal cancer. Current Pharmaceutical Design, 9, 2229–2251. doi:10.2174/1381612033454036.CrossRefGoogle Scholar
  27. 27.
    Kutchera, W., Jones, D. A., Matsunami, N., et al. (1996). Prostaglandin H synthase 2 is expressed abnormally in human colon cancer: Evidence for a transcriptional effect. Proceedings of the National Academy of Sciences of the United States of America, 93, 4816–4820. doi:10.1073/pnas.93.10.4816.CrossRefGoogle Scholar
  28. 28.
    Kargman, S. L., O’Neill, G. P., Vickers, P. J., Evans, J. F., Mancini, J. A., & Jothy, S. (1995). Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer. Cancer Research, 55, 2556–2559.Google Scholar
  29. 29.
    Mohammed, S. I., Knapp, D. W., Bostwick, D. G., et al. (1999). Expression of cyclooxygenase-2 (COX-2) in human invasivetransitional cell carcinoma (TCC) of the urinary bladder. Cancer Research, 59, 5647–5650.Google Scholar
  30. 30.
    Boström, P. J., Aaltonen, V., Söderström, K. O., Uotila, P., & Laato, M. (2001). Expression of cyclooxygenase-1 and -2 in urinary bladder carcinomas in vivo and in vitro and prostaglandin E2 synthesis in cultured bladder cancer cells. Pathology, 33, 469–474. doi:10.1080/00313020120083188.CrossRefGoogle Scholar
  31. 31.
    Shirahama, T., & Sakakura, C. (2001). Overexpression of cyclooxygenase-2 in squamous cell carcinoma of the urinary bladder. Clinical Cancer Research, 7, 558–561.Google Scholar
  32. 32.
    Yoshimura, R., Sano, H., Mitsuhashi, M., Kohno, M., Chargui, J., & Wada, S. (2001). Expression of cyclooxygenase-2 in patients with bladder carcinoma. Journal of Urology, 165, 1468–1472. doi:10.1016/S0022-5347(05)66329-X.CrossRefGoogle Scholar
  33. 33.
    Godbey, W. T., & Atala, A. (2003). Directed Apoptosis in Cox-2-overexpressing cancer cells through expression-targeted gene delivery. Gene Therapy, 10, 1519–1527. doi:10.1038/ Scholar
  34. 34.
    Fletcher, B. S., Kujubu, D. A., Perrin, D. M., & Herschman, H. R. (1992). Structure of the mitogen-inducible TIS10 gene and demonstration that the TIS10-encoded protein is a functional prostaglandin G/H synthase. The Journal of Biological Chemistry, 267, 4338–4344.Google Scholar
  35. 35.
    Kujubu, D. A., Fletcher, B. S., Varnum, B. C., Lim, R. W., & Herschman, H. R. (1991). TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. The Journal of Biological Chemistry, 266, 12866–12872.Google Scholar
  36. 36.
    Strausberg, R. L., Feingold, E. A., & Grouse, L. H. (2002). Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America, 99, 16899–16903. doi:10.1073/pnas.242603899.CrossRefGoogle Scholar
  37. 37.
    Fan, L., Freeman, K. W., Khan, T., Pham, E., & Spencer, D. M. (1999). Improved artificial death switches based on caspases and FADD. Human Gene Therapy, 10, 2273–2285. doi:10.1089/10430349950016924.CrossRefGoogle Scholar
  38. 38.
    Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45. doi:10.1093/nar/29.9.e45.CrossRefGoogle Scholar
  39. 39.
    Godbey, W. T., Wu, K. K., & Mikos, A. G. (1999). Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proceedings of the National Academy of Sciences of the United States of America, 96, 5177–5181. doi:10.1073/pnas.96.9.5177.CrossRefGoogle Scholar
  40. 40.
    Jin, L., Zeng, H., Chien, S., et al. (2000). In vivo selection using a cell-growth switch. Nature Genetics, 26, 64–66. doi:10.1038/79194.CrossRefGoogle Scholar
  41. 41.
    Fischer, D., Li, Y., Ahlemeyer, B., Krieglatein, J., & Kissel, T. (2003). In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis. Biomaterials, 24, 1121–1131. doi:10.1016/S0142-9612(02)00445-3.CrossRefGoogle Scholar
  42. 42.
    Koopman, G., Reutelingsperger, C. P., Kuijten, G. A., Keehnen, R. M., Pals, S. T., & van Oers, M. H. (1994). Annexin-V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood, 84, 1415–1420.Google Scholar
  43. 43.
    O’Brien, I. E., Reutelingsperger, C. P., & Holdaway, K. M. (1997). Annexin-V and TUNEL use in monitoring the progression of apoptosis in plants. Cytometry, 29, 28–33. doi :10.1002/(SICI)1097-0320(19970901)29:1<28::AID-CYTO2>3.0.CO;2-9.CrossRefGoogle Scholar
  44. 44.
    Zhang, G., Gurtu, V., Kain, S. R., & Yan, G. (1997). Early detection of apoptosis using a fluorescent conjugate of annexin-V. BioTechniques, 23, 525–531.Google Scholar
  45. 45.
    Nicholson, D. W., & Thornberry, N. A. (1997). Caspases: Killer proteases. Trends in Biochemical Sciences, 22, 299–306. doi:10.1016/S0968-0004(97)01085-2.CrossRefGoogle Scholar
  46. 46.
    Scaffidi, C., Fulda, S., Srinivasan, A., et al. (1998). Two CD95 (APO–1/Fas) signaling pathways. The EMBO Journal, 17, 1675–1687. doi:10.1093/emboj/17.6.1675.CrossRefGoogle Scholar
  47. 47.
    Mak, T. W., & Yeh, W. C. (2002). Signaling for survival and apoptosis in the immune system. Arthritis Research, 4(Suppl), S243–S252. doi:10.1186/ar569.CrossRefGoogle Scholar
  48. 48.
    Trapani, J. A. (2001). Granzymes: A family of lymphocyte granule serine proteases. Genome Biology, 2, 3014.1–3014.7. reviews.CrossRefGoogle Scholar
  49. 49.
    Hetts, S. W. (1998). To die or not to die: An overview of apoptosis and its role in disease. Journal of the American Medical Association, 279, 300–307. doi:10.1001/jama.279.4.300.CrossRefGoogle Scholar
  50. 50.
    Eissa, S., & Seada, L. S. (1998). Quantitation of bcl–2 protein in bladder cancer tissue by enzyme immunoassay: Comparison with Western blot and immunohistochemistry. Clinical Chemistry, 44, 1423–1429.Google Scholar
  51. 51.
    King, M. A., & Radicchi-Mastroianni, M. A. (2002). Effects of caspase inhibition on camptothecin-induced apoptosis of HL-60 cells. Cytometry, 49, 28–35. doi:10.1002/cyto.10141.CrossRefGoogle Scholar
  52. 52.
    Martin, S. J., Reutelingsperger, C. P., McGahon, A. J., et al. (1995). Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overexpression of Bcl–2 and Abl. The Journal of Experimental Medicine, 182, 1545–1556. doi:10.1084/jem.182.5.1545.CrossRefGoogle Scholar
  53. 53.
    Negron, J. F., & Lockshin, R. A. (2004). Activation of apoptosis and caspase-3 in zebrafish early gastrulae. Developmental Dynamics, 231, 161–170. doi:10.1002/dvdy.20124.CrossRefGoogle Scholar
  54. 54.
    Fahrmeir, J., Gunther, M., Tietze, N., Wagner, E., & Ogris, M. (2007). Electrophoretic purification of tumor-targeted polyethylenimine-based polyplexes reduces toxic side effects in vivo. Journal of Controlled Release, 122, 236–245. doi:10.1016/j.jconrel.2007.05.013.CrossRefGoogle Scholar
  55. 55.
    Moffatt, S., Wiehle, S., & Cristiano, R. J. (2006). A multifunctional PEI-based cationic polyplex for enhanced systemic p53-mediated gene therapy. Gene Therapy, 13, 1512–1523. doi:10.1038/ Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Laboratory for Gene Therapy and Cellular Engineering, Department of Chemical and Biomolecular EngineeringTulane UniversityNew OrleansUSA
  2. 2.Department of ChemistryGrambling State UniversityGramblingUSA

Personalised recommendations