Molecular Biotechnology

, Volume 41, Issue 3, pp 286–295 | Cite as

What is (Still not) Known of the Mechanism by Which Electroporation Mediates Gene Transfer and Expression in Cells and Tissues

  • Jean-Michel Escoffre
  • Thomas Portet
  • Luc Wasungu
  • Justin Teissié
  • David Dean
  • Marie-Pierre Rols
Review

Abstract

Cell membranes can be transiently permeabilized under application of electric pulses. This treatment allows hydrophilic therapeutic molecules, such as anticancer drugs and DNA, to enter into cells and tissues. This process, called electropermeabilization or electroporation, has been rapidly developed over the last decade to deliver genes to tissues and organs, but there is a general agreement that very little is known about what is really occurring during membrane electropermeabilization. It is well accepted that the entry of small molecules, such as anticancer drugs, occurs mostly through simple diffusion after the pulse while the entry of macromolecules, such as DNA, occurs through a multistep mechanism involving the electrophoretically driven interaction of the DNA molecule with the destabilized membrane during the pulse and then its passage across the membrane. Therefore, successful DNA electrotransfer into cells depends not only on cell permeabilization but also on the way plasmid DNA interacts with the plasma membrane and, once into the cytoplasm, migrates towards the nucleus. The focus of this review is to describe the different aspects of what is known of the mechanism of membrane permeabilization and associated gene transfer and, by doing so, what are the actual limits of the DNA delivery into cells.

Keywords

Gene transfer Gene expression Membrane Electric field Electroporation Electropermeabilization 

References

  1. 1.
    Wolff, J. A., & Budker, V. (2005). The mechanism of naked DNA uptake and expression. Advances in Genetics, 54, 3–20.CrossRefGoogle Scholar
  2. 2.
    Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., McCormack, M. P., Wulffraat, N., Leboulch, P., et al. (2003). LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science, 302, 415–419.CrossRefGoogle Scholar
  3. 3.
    Hacein-Bey-Abina, S., Le Deist, F., Carlier, F., Bouneaud, C., Hue, C., De Villartay, J. P., et al. (2002). Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. New England Journal of Medicine, 346, 1185–1193.CrossRefGoogle Scholar
  4. 4.
    Bester, A.C., Schwartz, M., Schmidt, M., Garrigue, A., Hacein-Bey-Abina, S., Cavazzana-Calvo, M., Ben-Porat, N., Von Kalle, C., Fischer, A., & Kerem, B. (2006). Fragile sites are preferential targets for integrations of MLV vectors in gene therapy. Gene Therapy, 13, 1057–1059.CrossRefGoogle Scholar
  5. 5.
    Rols, M. P. (2006). Electropermeabilization, a physical method for the delivery of therapeutic molecules into cells. Biochimica et Biophysica Acta, 1758, 423–428.CrossRefGoogle Scholar
  6. 6.
    Mir, L. M., Belehradek, M., Domenge, C., Orlowski, S., Poddevin, B., Belehradek, J., Jr., et al. (1991). Electrochemotherapy, a new antitumor treatment: First clinical trial. Comptes Rendus de l’Academie des Sciences. Serie III, Sciences de la Vie, 313, 613–618.Google Scholar
  7. 7.
    Mir, L. M., Orlowski, S., Belehradek, J., Jr., & Paoletti, C. (1991). Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. European Journal of Cancer, 27, 68–72.Google Scholar
  8. 8.
    Belehradek, M., Domenge, C., Luboinski, B., Orlowski, S., Belehradek, J., Jr., & Mir, L. M. (1993). Electrochemotherapy, a new antitumor treatment. First clinical phase I-II trial. Cancer, 72, 3694–3700.CrossRefGoogle Scholar
  9. 9.
    Gehl, J. (2003). Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiologica Scandinavica, 177, 437–447.CrossRefGoogle Scholar
  10. 10.
    Gothelf, A., Mir, L. M., & Gehl, J. (2003). Electrochemotherapy: Results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treatment Reviews, 29, 371–387.CrossRefGoogle Scholar
  11. 11.
    Mir, L. M., Glass, L. F., Sersa, G., Teissie, J., Domenge, C., Miklavcic, D., et al. (1998). Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. British Journal of Cancer, 77, 2336–2342.Google Scholar
  12. 12.
    Sersa, G., Miklavcic, D., Cemazar, M., Rudolf, Z., Pucihar, G., & Snoj, M. (2008). Electrochemotherapy in treatment of tumours. European Journal of Surgical Oncology, 34, 232–240.CrossRefGoogle Scholar
  13. 13.
    Golzio, M., Rols, M. P., & Teissie, J. (2004). In vitro and in vivo electric field-mediated permeabilization, gene transfer, and expression. Methods, 33, 126–135.CrossRefGoogle Scholar
  14. 14.
    Scherman, D., Bigey, P., & Bureau, M. F. (2002). Applications of plasmid electrotransfer. Technology in Cancer Research and Treatment, 1, 351–354.Google Scholar
  15. 15.
    Bloquel, C., Fabre, E., Bureau, M. F., & Scherman, D. (2004). Plasmid DNA electrotransfer for intracellular and secreted proteins expression: New methodological developments and applications. The Journal of Gene Medicine, 6(Suppl 1), S11–S23.CrossRefGoogle Scholar
  16. 16.
    Trezise, A. E., Buchwald, M., & Higgins, C. F. (1993). Testis-specific, alternative splicing of rodent CFTR mRNA. Human Molecular Genetics, 2, 801–802.CrossRefGoogle Scholar
  17. 17.
    Miklavcic, D., Semrov, D., Mekid, H., & Mir, L. M. (2000). A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochimica et Biophysica Acta, 1523, 73–83.Google Scholar
  18. 18.
    Gehl, J., Sorensen, T. H., Nielsen, K., Raskmark, P., Nielsen, S. L., Skovsgaard, T., et al. (1999). In vivo electroporation of skeletal muscle: Threshold, efficacy and relation to electric field distribution. Biochimica et Biophysica Acta, 1428, 233–240.Google Scholar
  19. 19.
    Gilbert, R. A., Jaroszeski, M. J., & Heller, R. (1997). Novel electrode designs for electrochemotherapy. Biochimica et Biophysica Acta, 1334, 9–14.Google Scholar
  20. 20.
    Gehl, J. (2008). Electroporation for drug and gene delivery in the clinic: Doctors go electric. Methods in Molecular Biology, 423, 351–359.CrossRefGoogle Scholar
  21. 21.
    Mir, L. M. (2008). Application of electroporation gene therapy: Past, current, and future. Methods in Molecular Biology, 423, 3–17.CrossRefGoogle Scholar
  22. 22.
    Hirao, L. A., Wu, L., Khan, A. S., Hokey, D. A., Yan, J., Dai, A., et al. (2008). Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine, 26, 3112–3120.CrossRefGoogle Scholar
  23. 23.
    Neumann, E., Schaefer-Ridder, M., Wang, Y., & Hofschneider, P. H. (1982). Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO Journal, 1, 841–845.Google Scholar
  24. 24.
    Neumann, E., Sowers, A. E., & Jordan, C. A. (1989). Electroporation and electrofusion in cell biology. New York: Plenum.Google Scholar
  25. 25.
    Escoffre, J.M., Dean, D.S., Hubert, M., Rols, M.P. and Favard, C. (2007). Membrane perturbation by an external electric field: A mechanism to permit molecular uptake. European Biophysics Journal, 36, 973–983.CrossRefGoogle Scholar
  26. 26.
    Weaver, J. C. (1995). Electroporation theory. Concepts and mechanisms. Methods in Molecular Biology, 55, 3–28.Google Scholar
  27. 27.
    Teissie, J., Golzio, M., & Rols, M. P. (2005). Mechanisms of cell membrane electropermeabilization: A minireview of our present (lack of ?) knowledge. Biochimica et Biophysica Acta, 1724, 270–280.Google Scholar
  28. 28.
    Chang, D. C., & Reese, T. S. (1990). Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophysical Journal, 58, 1–12.CrossRefGoogle Scholar
  29. 29.
    Tarek, M. (2005). Membrane electroporation: A molecular dynamics simulation. Biophysical Journal, 88, 4045–4053.CrossRefGoogle Scholar
  30. 30.
    Tieleman, D. P. (2004). The molecular basis of electroporation. BMC Biochem, 5, 10.CrossRefGoogle Scholar
  31. 31.
    Stulen, G. (1981). Electric field effects on lipid membrane structure. Biochimica et Biophysica Acta, 640, 621–627.CrossRefGoogle Scholar
  32. 32.
    Lopez, A., Rols, M. P., & Teissie, J. (1988). 31P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells. Biochemistry, 27, 1222–1228.CrossRefGoogle Scholar
  33. 33.
    Haest, C. W., Kamp, D., & Deuticke, B. (1997). Transbilayer reorientation of phospholipid probes in the human erythrocyte membrane. Lessons from studies on electroporated and resealed cells. Biochimica et Biophysica Acta, 1325, 17–33.CrossRefGoogle Scholar
  34. 34.
    Bernhardt, J., & Pauly, H. (1973). On the generation of potential differences across the membranes of ellipsoidal cells in an alternating electrical field. Biophysik, 10, 89–98.CrossRefGoogle Scholar
  35. 35.
    Mehrle, W., Hampp, R., & Zimmermann, U. (1989). Electric pulse induced membrane permeabilization. Spatial orientation and kinetics of solute efflux in freely suspended and dielectrophoretically aligned plant mesophyll protoplasts. Biochimica et Biophysica Acta, 978, 267–275.CrossRefGoogle Scholar
  36. 36.
    Kotnik, T., & Miklavcic, D. (2000). Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophysical Journal, 79, 670–679.CrossRefGoogle Scholar
  37. 37.
    Hibino, M., Itoh, H., & Kinosita, K., Jr. (1993). Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophysical Journal, 64, 1789–1800.CrossRefGoogle Scholar
  38. 38.
    Valic, B., Golzio, M., Pavlin, M., Schatz, A., Faurie, C., Gabriel, B., et al. (2003). Effect of electric field induced transmembrane potential on spheroidal cells: Theory and experiment. European Biophysics Journal, 32, 519–528.CrossRefGoogle Scholar
  39. 39.
    Pucihar, G., Kotnik, T., Valic, B., & Miklavcic, D. (2006). Numerical determination of transmembrane voltage induced on irregularly shaped cells. Annals of Biomedical Engineering, 34, 642–652.CrossRefGoogle Scholar
  40. 40.
    Hibino, M., Shigemori, M., Itoh, H., Nagayama, K., & Kinosita, K., Jr. (1991). Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophysical Journal, 59, 209–220.CrossRefGoogle Scholar
  41. 41.
    Teissie, J., & Rols, M. P. (1993). An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophysical Journal, 65, 409–413.CrossRefGoogle Scholar
  42. 42.
    Gabriel, B., & Teissie, J. (1997). Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophysical Journal, 73, 2630–2637.CrossRefGoogle Scholar
  43. 43.
    Schwister, K., & Deuticke, B. (1985). Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown. Biochimica et Biophysica Acta, 816, 332–348.CrossRefGoogle Scholar
  44. 44.
    Rols, M. P., & Teissie, J. (1990). Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophysical Journal, 58, 1089–1098.CrossRefGoogle Scholar
  45. 45.
    Gabriel, B., & Teissie, J. (1999). Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse. Biophysical Journal, 76, 2158–2165.CrossRefGoogle Scholar
  46. 46.
    Golzio, M., Teissie, J., & Rols, M. P. (2002). Direct visualization at the single-cell level of electrically mediated gene delivery. Proceedings of the National Academic Sciences of the United Sciences of America, 99, 1292–1297.CrossRefGoogle Scholar
  47. 47.
    Rols, M. P., & Teissie, J. (1998). Electropermeabilization of mammalian cells to macromolecules: Control by pulse duration. Biophysical Journal, 75, 1415–1423.CrossRefGoogle Scholar
  48. 48.
    Glogauer, M., Lee, W., & McCulloch, C. A. (1993). Induced endocytosis in human fibroblasts by electrical fields. Experimental Cell Research, 208, 232–240.CrossRefGoogle Scholar
  49. 49.
    Rols, M. P., Femenia, P., & Teissie, J. (1995). Long-lived macropinocytosis takes place in electropermeabilized mammalian cells. Biochemical and Biophysical Research Communications, 208, 26–35.CrossRefGoogle Scholar
  50. 50.
    Favard, C., Dean, D. S., & Rols, M. P. (2007). Electrotransfer as a non viral method of gene delivery. Current Gene Therapy, 7, 67–77.CrossRefGoogle Scholar
  51. 51.
    Angelova, M. I., & Tsoneva, I. (1999). Interactions of DNA with giant liposomes. Chemistry and Physics of Lipids, 101, 123–137.CrossRefGoogle Scholar
  52. 52.
    Angelova, M. I., Hristova, N., & Tsoneva, I. (1999). DNA-induced endocytosis upon local microinjection to giant unilamellar cationic vesicles. European Biophysics Journal, 28, 142–150.CrossRefGoogle Scholar
  53. 53.
    Chernomordik, L. V., Sokolov, A. V., & Budker, V. G. (1990). Electrostimulated uptake of DNA by liposomes. Biochimica et Biophysica Acta, 1024, 179–183.CrossRefGoogle Scholar
  54. 54.
    Hristova, N. I., Tsoneva, I., & Neumann, E. (1997). Sphingosine-mediated electroporative DNA transfer through lipid bilayers. FEBS Letters, 415, 81–86.CrossRefGoogle Scholar
  55. 55.
    Spassova, M., Tsoneva, I., Petrov, A. G., Petkova, J. I., & Neumann, E. (1994). Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers. Biophysical Chemistry, 52, 267–274.CrossRefGoogle Scholar
  56. 56.
    Kubiniec, R. T., Liang, H., & Hui, S. W. (1990). Effects of pulse length and pulse strength on transfection by electroporation. Biotechniques, 8, 16–20.Google Scholar
  57. 57.
    Liang, H., Purucker, W. J., Stenger, D. A., Kubiniec, R. T., & Hui, S. W. (1988). Uptake of fluorescence-labeled dextrans by 10T 1/2 fibroblasts following permeation by rectangular and exponential-decay electric field pulses. Biotechniques, 6, 550–552, 554, 556–558.Google Scholar
  58. 58.
    Wolf, H., Rols, M. P., Boldt, E., Neumann, E., & Teissie, J. (1994). Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophysical Journal, 66, 524–531.CrossRefGoogle Scholar
  59. 59.
    Rols, M. P., Coulet, D., & Teissie, J. (1992). Highly efficient transfection of mammalian cells by electric field pulses. Application to large volumes of cell culture by using a flow system. European Journal of Biochemistry, 206, 115–121.CrossRefGoogle Scholar
  60. 60.
    Heller, R., Jaroszeski, M., Atkin, A., Moradpour, D., Gilbert, R., Wands, J., et al. (1996). In vivo gene electroinjection and expression in rat liver. FEBS Letters, 389, 225–228.CrossRefGoogle Scholar
  61. 61.
    Klenchin, V. A., Sukharev, S. I., Serov, S. M., Chernomordik, L. V., & Chizmadzhev Yu, A. (1991). Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophysical Journal, 60, 804–811.CrossRefGoogle Scholar
  62. 62.
    Sukharev, S. I., Klenchin, V. A., Serov, S. M., Chernomordik, L. V., & Chizmadzhev Yu, A. (1992). Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophysical Journal, 63, 1320–1327.CrossRefGoogle Scholar
  63. 63.
    Muller, K. J., Horbaschek, M., Lucas, K., Zimmermann, U., & Sukhorukov, V. L. (2003). Electrotransfection of anchorage-dependent mammalian cells. Experimental Cell Research, 288, 344–353.CrossRefGoogle Scholar
  64. 64.
    Faurie, C., Phez, E., Golzio, M., Vossen, C., Lesbordes, J. C., Delteil, C., et al. (2004). Effect of electric field vectoriality on electrically mediated gene delivery in mammalian cells. Biochimica et Biophysica Acta, 1665, 92–100.CrossRefGoogle Scholar
  65. 65.
    Liu, F., Heston, S., Shollenberger, L. M., Sun, B., Mickle, M., Lovell, M., et al. (2006). Mechanism of in vivo DNA transport into cells by electroporation: Electrophoresis across the plasma membrane may not be involved. The Journal of Gene Medicine, 8, 353–361.CrossRefGoogle Scholar
  66. 66.
    Satkauskas, S., Bureau, M. F., Puc, M., Mahfoudi, A., Scherman, D., Miklavcic, D., et al. (2002). Mechanisms of in vivo DNA electrotransfer: Respective contributions of cell electropermeabilization and DNA electrophoresis. Mol Ther, 5, 133–140.CrossRefGoogle Scholar
  67. 67.
    Satkauskas, S., Andre, F., Bureau, M. F., Scherman, D., Miklavcic, D., & Mir, L. M. (2005). Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Human Gene Therapy, 16, 1194–1201.CrossRefGoogle Scholar
  68. 68.
    Bureau, M. F., Gehl, J., Deleuze, V., Mir, L. M., & Scherman, D. (2000). Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochimica et Biophysica Acta, 1474, 353–359.Google Scholar
  69. 69.
    Mir, L. M., Bureau, M. F., Gehl, J., Rangara, R., Rouy, D., Caillaud, J. M., et al. (1999). High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proceedings of the National Academic Sciences of the United Sciences of America, 96, 4262–4267.CrossRefGoogle Scholar
  70. 70.
    Aihara, H., & Miyazaki, J. (1998). Gene transfer into muscle by electroporation in vivo. Nature Biotechnology, 16, 867–870.CrossRefGoogle Scholar
  71. 71.
    Pavselj, N., & Preat, V. (2005). DNA electrotransfer into the skin using a combination of one high- and one low-voltage pulse. Journal of Controlled Release, 106, 407–415.CrossRefGoogle Scholar
  72. 72.
    Phez, E., Faurie, C., Golzio, M., Teissie, J., & Rols, M. P. (2005). New insights in the visualization of membrane permeabilization and DNA/membrane interaction of cells submitted to electric pulses. Biochimica et Biophysica Acta, 1724, 248–254.Google Scholar
  73. 73.
    Brown, D. A., & London, E. (2000). Structure and function of sphingolipid- and cholesterol-rich membrane rafts. Journal of Biological Chemistry, 275, 17221–17224.CrossRefGoogle Scholar
  74. 74.
    Brown, D. A., & London, E. (1998). Functions of lipid rafts in biological membranes. Annual Review of Cell and Developmental Biology, 14, 111–136.CrossRefGoogle Scholar
  75. 75.
    Lechardeur, D., & Lukacs, G. L. (2002). Intracellular barriers to non-viral gene transfer. Current Gene Therapy, 2, 183–194.CrossRefGoogle Scholar
  76. 76.
    Seksek, O., Biwersi, J., & Verkman, A. S. (1997). Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. Journal of Cell Biology, 138, 131–142.CrossRefGoogle Scholar
  77. 77.
    Dowty, M. E., Williams, P., Zhang, G., Hagstrom, J. E., & Wolff, J. A. (1995). Plasmid DNA entry into postmitotic nuclei of primary rat myotubes. Proceedings of the National Academic Sciences of the United Sciences of America, 92, 4572–4576.CrossRefGoogle Scholar
  78. 78.
    Rols, M. P., & Teissie, J. (1992). Experimental evidence for the involvement of the cytoskeleton in mammalian cell electropermeabilization. Biochimica et Biophysica Acta, 1111, 45–50.CrossRefGoogle Scholar
  79. 79.
    Lechardeur, D., Sohn, K. J., Haardt, M., Joshi, P. B., Monck, M., Graham, R. W., et al. (1999). Metabolic instability of plasmid DNA in the cytosol: A potential barrier to gene transfer. Gene Therapy, 6, 482–497.CrossRefGoogle Scholar
  80. 80.
    Bureau, M. F., Naimi, S., Torero Ibad, R., Seguin, J., Georger, C., Arnould, E., et al. (2004). Intramuscular plasmid DNA electrotransfer: Biodistribution and degradation. Biochimica et Biophysica Acta, 1676, 138–148.Google Scholar
  81. 81.
    Takahashi, M., Furukawa, T., Nikkuni, K., Aoki, A., Nomoto, N., Koike, T., et al. (1991). Efficient introduction of a gene into hematopoietic cells in S-phase by electroporation. Experimental Hematology, 19, 343–346.Google Scholar
  82. 82.
    Schwachtgen, J. L., Ferreira, V., Meyer, D., & Kerbiriou-Nabias, D. (1994). Optimization of the transfection of human endothelial cells by electroporation. Biotechniques, 17, 882–887.Google Scholar
  83. 83.
    Golzio, M., Teissie, J., & Rols, M. P. (2002). Cell synchronization effect on mammalian cell permeabilization and gene delivery by electric field. Biochimica et Biophysica Acta, 1563, 23–28.CrossRefGoogle Scholar
  84. 84.
    Vaughan, E. E., & Dean, D. A. (2006). Intracellular trafficking of plasmids during transfection is mediated by microtubules. Molecular Therapy, 13, 422–428.CrossRefGoogle Scholar
  85. 85.
    Vaughan, E. E., Geiger, R. C., Miller, A. M., Loh-Marley, P. L., Suzuki, T., Miyata, N., & Dean, D. A. (2008). Microtubule acetylation through HDAC6 inhibition results in increased transfection efficiency. Molecular Therapy, 16, 1841–1847.CrossRefGoogle Scholar
  86. 86.
    Schoenbach, K. H., Beebe, S. J., & Buescher, E. S. (2001). Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics, 22, 440–448.CrossRefGoogle Scholar
  87. 87.
    Beebe, S. J., White, J., Blackmore, P. F., Deng, Y., Somers, K., & Schoenbach, K. H. (2003). Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA and Cell Biology, 22, 785–796.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Jean-Michel Escoffre
    • 1
    • 2
  • Thomas Portet
    • 1
    • 2
    • 3
  • Luc Wasungu
    • 1
    • 2
  • Justin Teissié
    • 1
    • 2
  • David Dean
    • 3
  • Marie-Pierre Rols
    • 1
    • 2
  1. 1.CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale)ToulouseFrance
  2. 2.Université de Toulouse, UPS, IPBSToulouseFrance
  3. 3.Laboratoire de Physique Théorique - CNRS UMR 5152, IRSAMCUniversité Paul SabatierToulouse cedex 4France

Personalised recommendations