What is (Still not) Known of the Mechanism by Which Electroporation Mediates Gene Transfer and Expression in Cells and Tissues
- 2k Downloads
- 138 Citations
Abstract
Cell membranes can be transiently permeabilized under application of electric pulses. This treatment allows hydrophilic therapeutic molecules, such as anticancer drugs and DNA, to enter into cells and tissues. This process, called electropermeabilization or electroporation, has been rapidly developed over the last decade to deliver genes to tissues and organs, but there is a general agreement that very little is known about what is really occurring during membrane electropermeabilization. It is well accepted that the entry of small molecules, such as anticancer drugs, occurs mostly through simple diffusion after the pulse while the entry of macromolecules, such as DNA, occurs through a multistep mechanism involving the electrophoretically driven interaction of the DNA molecule with the destabilized membrane during the pulse and then its passage across the membrane. Therefore, successful DNA electrotransfer into cells depends not only on cell permeabilization but also on the way plasmid DNA interacts with the plasma membrane and, once into the cytoplasm, migrates towards the nucleus. The focus of this review is to describe the different aspects of what is known of the mechanism of membrane permeabilization and associated gene transfer and, by doing so, what are the actual limits of the DNA delivery into cells.
Keywords
Gene transfer Gene expression Membrane Electric field Electroporation ElectropermeabilizationNotes
Acknowledgements
Many thanks are due to the financial supports from the CNRS, the French ANR PCV programme, the Association Française sur les Myopathies, the Region Midi Pyrénées and the Fondation pour la Recherche Médicale.
References
- 1.Wolff, J. A., & Budker, V. (2005). The mechanism of naked DNA uptake and expression. Advances in Genetics, 54, 3–20.CrossRefGoogle Scholar
- 2.Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., McCormack, M. P., Wulffraat, N., Leboulch, P., et al. (2003). LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science, 302, 415–419.CrossRefGoogle Scholar
- 3.Hacein-Bey-Abina, S., Le Deist, F., Carlier, F., Bouneaud, C., Hue, C., De Villartay, J. P., et al. (2002). Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. New England Journal of Medicine, 346, 1185–1193.CrossRefGoogle Scholar
- 4.Bester, A.C., Schwartz, M., Schmidt, M., Garrigue, A., Hacein-Bey-Abina, S., Cavazzana-Calvo, M., Ben-Porat, N., Von Kalle, C., Fischer, A., & Kerem, B. (2006). Fragile sites are preferential targets for integrations of MLV vectors in gene therapy. Gene Therapy, 13, 1057–1059.CrossRefGoogle Scholar
- 5.Rols, M. P. (2006). Electropermeabilization, a physical method for the delivery of therapeutic molecules into cells. Biochimica et Biophysica Acta, 1758, 423–428.CrossRefGoogle Scholar
- 6.Mir, L. M., Belehradek, M., Domenge, C., Orlowski, S., Poddevin, B., Belehradek, J., Jr., et al. (1991). Electrochemotherapy, a new antitumor treatment: First clinical trial. Comptes Rendus de l’Academie des Sciences. Serie III, Sciences de la Vie, 313, 613–618.Google Scholar
- 7.Mir, L. M., Orlowski, S., Belehradek, J., Jr., & Paoletti, C. (1991). Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. European Journal of Cancer, 27, 68–72.Google Scholar
- 8.Belehradek, M., Domenge, C., Luboinski, B., Orlowski, S., Belehradek, J., Jr., & Mir, L. M. (1993). Electrochemotherapy, a new antitumor treatment. First clinical phase I-II trial. Cancer, 72, 3694–3700.CrossRefGoogle Scholar
- 9.Gehl, J. (2003). Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiologica Scandinavica, 177, 437–447.CrossRefGoogle Scholar
- 10.Gothelf, A., Mir, L. M., & Gehl, J. (2003). Electrochemotherapy: Results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treatment Reviews, 29, 371–387.CrossRefGoogle Scholar
- 11.Mir, L. M., Glass, L. F., Sersa, G., Teissie, J., Domenge, C., Miklavcic, D., et al. (1998). Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. British Journal of Cancer, 77, 2336–2342.Google Scholar
- 12.Sersa, G., Miklavcic, D., Cemazar, M., Rudolf, Z., Pucihar, G., & Snoj, M. (2008). Electrochemotherapy in treatment of tumours. European Journal of Surgical Oncology, 34, 232–240.CrossRefGoogle Scholar
- 13.Golzio, M., Rols, M. P., & Teissie, J. (2004). In vitro and in vivo electric field-mediated permeabilization, gene transfer, and expression. Methods, 33, 126–135.CrossRefGoogle Scholar
- 14.Scherman, D., Bigey, P., & Bureau, M. F. (2002). Applications of plasmid electrotransfer. Technology in Cancer Research and Treatment, 1, 351–354.Google Scholar
- 15.Bloquel, C., Fabre, E., Bureau, M. F., & Scherman, D. (2004). Plasmid DNA electrotransfer for intracellular and secreted proteins expression: New methodological developments and applications. The Journal of Gene Medicine, 6(Suppl 1), S11–S23.CrossRefGoogle Scholar
- 16.Trezise, A. E., Buchwald, M., & Higgins, C. F. (1993). Testis-specific, alternative splicing of rodent CFTR mRNA. Human Molecular Genetics, 2, 801–802.CrossRefGoogle Scholar
- 17.Miklavcic, D., Semrov, D., Mekid, H., & Mir, L. M. (2000). A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochimica et Biophysica Acta, 1523, 73–83.Google Scholar
- 18.Gehl, J., Sorensen, T. H., Nielsen, K., Raskmark, P., Nielsen, S. L., Skovsgaard, T., et al. (1999). In vivo electroporation of skeletal muscle: Threshold, efficacy and relation to electric field distribution. Biochimica et Biophysica Acta, 1428, 233–240.Google Scholar
- 19.Gilbert, R. A., Jaroszeski, M. J., & Heller, R. (1997). Novel electrode designs for electrochemotherapy. Biochimica et Biophysica Acta, 1334, 9–14.Google Scholar
- 20.Gehl, J. (2008). Electroporation for drug and gene delivery in the clinic: Doctors go electric. Methods in Molecular Biology, 423, 351–359.CrossRefGoogle Scholar
- 21.Mir, L. M. (2008). Application of electroporation gene therapy: Past, current, and future. Methods in Molecular Biology, 423, 3–17.CrossRefGoogle Scholar
- 22.Hirao, L. A., Wu, L., Khan, A. S., Hokey, D. A., Yan, J., Dai, A., et al. (2008). Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine, 26, 3112–3120.CrossRefGoogle Scholar
- 23.Neumann, E., Schaefer-Ridder, M., Wang, Y., & Hofschneider, P. H. (1982). Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO Journal, 1, 841–845.Google Scholar
- 24.Neumann, E., Sowers, A. E., & Jordan, C. A. (1989). Electroporation and electrofusion in cell biology. New York: Plenum.Google Scholar
- 25.Escoffre, J.M., Dean, D.S., Hubert, M., Rols, M.P. and Favard, C. (2007). Membrane perturbation by an external electric field: A mechanism to permit molecular uptake. European Biophysics Journal, 36, 973–983.CrossRefGoogle Scholar
- 26.Weaver, J. C. (1995). Electroporation theory. Concepts and mechanisms. Methods in Molecular Biology, 55, 3–28.Google Scholar
- 27.Teissie, J., Golzio, M., & Rols, M. P. (2005). Mechanisms of cell membrane electropermeabilization: A minireview of our present (lack of ?) knowledge. Biochimica et Biophysica Acta, 1724, 270–280.Google Scholar
- 28.Chang, D. C., & Reese, T. S. (1990). Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophysical Journal, 58, 1–12.CrossRefGoogle Scholar
- 29.Tarek, M. (2005). Membrane electroporation: A molecular dynamics simulation. Biophysical Journal, 88, 4045–4053.CrossRefGoogle Scholar
- 30.Tieleman, D. P. (2004). The molecular basis of electroporation. BMC Biochem, 5, 10.CrossRefGoogle Scholar
- 31.Stulen, G. (1981). Electric field effects on lipid membrane structure. Biochimica et Biophysica Acta, 640, 621–627.CrossRefGoogle Scholar
- 32.Lopez, A., Rols, M. P., & Teissie, J. (1988). 31P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells. Biochemistry, 27, 1222–1228.CrossRefGoogle Scholar
- 33.Haest, C. W., Kamp, D., & Deuticke, B. (1997). Transbilayer reorientation of phospholipid probes in the human erythrocyte membrane. Lessons from studies on electroporated and resealed cells. Biochimica et Biophysica Acta, 1325, 17–33.CrossRefGoogle Scholar
- 34.Bernhardt, J., & Pauly, H. (1973). On the generation of potential differences across the membranes of ellipsoidal cells in an alternating electrical field. Biophysik, 10, 89–98.CrossRefGoogle Scholar
- 35.Mehrle, W., Hampp, R., & Zimmermann, U. (1989). Electric pulse induced membrane permeabilization. Spatial orientation and kinetics of solute efflux in freely suspended and dielectrophoretically aligned plant mesophyll protoplasts. Biochimica et Biophysica Acta, 978, 267–275.CrossRefGoogle Scholar
- 36.Kotnik, T., & Miklavcic, D. (2000). Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophysical Journal, 79, 670–679.CrossRefGoogle Scholar
- 37.Hibino, M., Itoh, H., & Kinosita, K., Jr. (1993). Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophysical Journal, 64, 1789–1800.CrossRefGoogle Scholar
- 38.Valic, B., Golzio, M., Pavlin, M., Schatz, A., Faurie, C., Gabriel, B., et al. (2003). Effect of electric field induced transmembrane potential on spheroidal cells: Theory and experiment. European Biophysics Journal, 32, 519–528.CrossRefGoogle Scholar
- 39.Pucihar, G., Kotnik, T., Valic, B., & Miklavcic, D. (2006). Numerical determination of transmembrane voltage induced on irregularly shaped cells. Annals of Biomedical Engineering, 34, 642–652.CrossRefGoogle Scholar
- 40.Hibino, M., Shigemori, M., Itoh, H., Nagayama, K., & Kinosita, K., Jr. (1991). Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophysical Journal, 59, 209–220.CrossRefGoogle Scholar
- 41.Teissie, J., & Rols, M. P. (1993). An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophysical Journal, 65, 409–413.CrossRefGoogle Scholar
- 42.Gabriel, B., & Teissie, J. (1997). Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophysical Journal, 73, 2630–2637.CrossRefGoogle Scholar
- 43.Schwister, K., & Deuticke, B. (1985). Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown. Biochimica et Biophysica Acta, 816, 332–348.CrossRefGoogle Scholar
- 44.Rols, M. P., & Teissie, J. (1990). Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophysical Journal, 58, 1089–1098.CrossRefGoogle Scholar
- 45.Gabriel, B., & Teissie, J. (1999). Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse. Biophysical Journal, 76, 2158–2165.CrossRefGoogle Scholar
- 46.Golzio, M., Teissie, J., & Rols, M. P. (2002). Direct visualization at the single-cell level of electrically mediated gene delivery. Proceedings of the National Academic Sciences of the United Sciences of America, 99, 1292–1297.CrossRefGoogle Scholar
- 47.Rols, M. P., & Teissie, J. (1998). Electropermeabilization of mammalian cells to macromolecules: Control by pulse duration. Biophysical Journal, 75, 1415–1423.CrossRefGoogle Scholar
- 48.Glogauer, M., Lee, W., & McCulloch, C. A. (1993). Induced endocytosis in human fibroblasts by electrical fields. Experimental Cell Research, 208, 232–240.CrossRefGoogle Scholar
- 49.Rols, M. P., Femenia, P., & Teissie, J. (1995). Long-lived macropinocytosis takes place in electropermeabilized mammalian cells. Biochemical and Biophysical Research Communications, 208, 26–35.CrossRefGoogle Scholar
- 50.Favard, C., Dean, D. S., & Rols, M. P. (2007). Electrotransfer as a non viral method of gene delivery. Current Gene Therapy, 7, 67–77.CrossRefGoogle Scholar
- 51.Angelova, M. I., & Tsoneva, I. (1999). Interactions of DNA with giant liposomes. Chemistry and Physics of Lipids, 101, 123–137.CrossRefGoogle Scholar
- 52.Angelova, M. I., Hristova, N., & Tsoneva, I. (1999). DNA-induced endocytosis upon local microinjection to giant unilamellar cationic vesicles. European Biophysics Journal, 28, 142–150.CrossRefGoogle Scholar
- 53.Chernomordik, L. V., Sokolov, A. V., & Budker, V. G. (1990). Electrostimulated uptake of DNA by liposomes. Biochimica et Biophysica Acta, 1024, 179–183.CrossRefGoogle Scholar
- 54.Hristova, N. I., Tsoneva, I., & Neumann, E. (1997). Sphingosine-mediated electroporative DNA transfer through lipid bilayers. FEBS Letters, 415, 81–86.CrossRefGoogle Scholar
- 55.Spassova, M., Tsoneva, I., Petrov, A. G., Petkova, J. I., & Neumann, E. (1994). Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers. Biophysical Chemistry, 52, 267–274.CrossRefGoogle Scholar
- 56.Kubiniec, R. T., Liang, H., & Hui, S. W. (1990). Effects of pulse length and pulse strength on transfection by electroporation. Biotechniques, 8, 16–20.Google Scholar
- 57.Liang, H., Purucker, W. J., Stenger, D. A., Kubiniec, R. T., & Hui, S. W. (1988). Uptake of fluorescence-labeled dextrans by 10T 1/2 fibroblasts following permeation by rectangular and exponential-decay electric field pulses. Biotechniques, 6, 550–552, 554, 556–558.Google Scholar
- 58.Wolf, H., Rols, M. P., Boldt, E., Neumann, E., & Teissie, J. (1994). Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophysical Journal, 66, 524–531.CrossRefGoogle Scholar
- 59.Rols, M. P., Coulet, D., & Teissie, J. (1992). Highly efficient transfection of mammalian cells by electric field pulses. Application to large volumes of cell culture by using a flow system. European Journal of Biochemistry, 206, 115–121.CrossRefGoogle Scholar
- 60.Heller, R., Jaroszeski, M., Atkin, A., Moradpour, D., Gilbert, R., Wands, J., et al. (1996). In vivo gene electroinjection and expression in rat liver. FEBS Letters, 389, 225–228.CrossRefGoogle Scholar
- 61.Klenchin, V. A., Sukharev, S. I., Serov, S. M., Chernomordik, L. V., & Chizmadzhev Yu, A. (1991). Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophysical Journal, 60, 804–811.CrossRefGoogle Scholar
- 62.Sukharev, S. I., Klenchin, V. A., Serov, S. M., Chernomordik, L. V., & Chizmadzhev Yu, A. (1992). Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophysical Journal, 63, 1320–1327.CrossRefGoogle Scholar
- 63.Muller, K. J., Horbaschek, M., Lucas, K., Zimmermann, U., & Sukhorukov, V. L. (2003). Electrotransfection of anchorage-dependent mammalian cells. Experimental Cell Research, 288, 344–353.CrossRefGoogle Scholar
- 64.Faurie, C., Phez, E., Golzio, M., Vossen, C., Lesbordes, J. C., Delteil, C., et al. (2004). Effect of electric field vectoriality on electrically mediated gene delivery in mammalian cells. Biochimica et Biophysica Acta, 1665, 92–100.CrossRefGoogle Scholar
- 65.Liu, F., Heston, S., Shollenberger, L. M., Sun, B., Mickle, M., Lovell, M., et al. (2006). Mechanism of in vivo DNA transport into cells by electroporation: Electrophoresis across the plasma membrane may not be involved. The Journal of Gene Medicine, 8, 353–361.CrossRefGoogle Scholar
- 66.Satkauskas, S., Bureau, M. F., Puc, M., Mahfoudi, A., Scherman, D., Miklavcic, D., et al. (2002). Mechanisms of in vivo DNA electrotransfer: Respective contributions of cell electropermeabilization and DNA electrophoresis. Mol Ther, 5, 133–140.CrossRefGoogle Scholar
- 67.Satkauskas, S., Andre, F., Bureau, M. F., Scherman, D., Miklavcic, D., & Mir, L. M. (2005). Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Human Gene Therapy, 16, 1194–1201.CrossRefGoogle Scholar
- 68.Bureau, M. F., Gehl, J., Deleuze, V., Mir, L. M., & Scherman, D. (2000). Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochimica et Biophysica Acta, 1474, 353–359.Google Scholar
- 69.Mir, L. M., Bureau, M. F., Gehl, J., Rangara, R., Rouy, D., Caillaud, J. M., et al. (1999). High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proceedings of the National Academic Sciences of the United Sciences of America, 96, 4262–4267.CrossRefGoogle Scholar
- 70.Aihara, H., & Miyazaki, J. (1998). Gene transfer into muscle by electroporation in vivo. Nature Biotechnology, 16, 867–870.CrossRefGoogle Scholar
- 71.Pavselj, N., & Preat, V. (2005). DNA electrotransfer into the skin using a combination of one high- and one low-voltage pulse. Journal of Controlled Release, 106, 407–415.CrossRefGoogle Scholar
- 72.Phez, E., Faurie, C., Golzio, M., Teissie, J., & Rols, M. P. (2005). New insights in the visualization of membrane permeabilization and DNA/membrane interaction of cells submitted to electric pulses. Biochimica et Biophysica Acta, 1724, 248–254.Google Scholar
- 73.Brown, D. A., & London, E. (2000). Structure and function of sphingolipid- and cholesterol-rich membrane rafts. Journal of Biological Chemistry, 275, 17221–17224.CrossRefGoogle Scholar
- 74.Brown, D. A., & London, E. (1998). Functions of lipid rafts in biological membranes. Annual Review of Cell and Developmental Biology, 14, 111–136.CrossRefGoogle Scholar
- 75.Lechardeur, D., & Lukacs, G. L. (2002). Intracellular barriers to non-viral gene transfer. Current Gene Therapy, 2, 183–194.CrossRefGoogle Scholar
- 76.Seksek, O., Biwersi, J., & Verkman, A. S. (1997). Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. Journal of Cell Biology, 138, 131–142.CrossRefGoogle Scholar
- 77.Dowty, M. E., Williams, P., Zhang, G., Hagstrom, J. E., & Wolff, J. A. (1995). Plasmid DNA entry into postmitotic nuclei of primary rat myotubes. Proceedings of the National Academic Sciences of the United Sciences of America, 92, 4572–4576.CrossRefGoogle Scholar
- 78.Rols, M. P., & Teissie, J. (1992). Experimental evidence for the involvement of the cytoskeleton in mammalian cell electropermeabilization. Biochimica et Biophysica Acta, 1111, 45–50.CrossRefGoogle Scholar
- 79.Lechardeur, D., Sohn, K. J., Haardt, M., Joshi, P. B., Monck, M., Graham, R. W., et al. (1999). Metabolic instability of plasmid DNA in the cytosol: A potential barrier to gene transfer. Gene Therapy, 6, 482–497.CrossRefGoogle Scholar
- 80.Bureau, M. F., Naimi, S., Torero Ibad, R., Seguin, J., Georger, C., Arnould, E., et al. (2004). Intramuscular plasmid DNA electrotransfer: Biodistribution and degradation. Biochimica et Biophysica Acta, 1676, 138–148.Google Scholar
- 81.Takahashi, M., Furukawa, T., Nikkuni, K., Aoki, A., Nomoto, N., Koike, T., et al. (1991). Efficient introduction of a gene into hematopoietic cells in S-phase by electroporation. Experimental Hematology, 19, 343–346.Google Scholar
- 82.Schwachtgen, J. L., Ferreira, V., Meyer, D., & Kerbiriou-Nabias, D. (1994). Optimization of the transfection of human endothelial cells by electroporation. Biotechniques, 17, 882–887.Google Scholar
- 83.Golzio, M., Teissie, J., & Rols, M. P. (2002). Cell synchronization effect on mammalian cell permeabilization and gene delivery by electric field. Biochimica et Biophysica Acta, 1563, 23–28.CrossRefGoogle Scholar
- 84.Vaughan, E. E., & Dean, D. A. (2006). Intracellular trafficking of plasmids during transfection is mediated by microtubules. Molecular Therapy, 13, 422–428.CrossRefGoogle Scholar
- 85.Vaughan, E. E., Geiger, R. C., Miller, A. M., Loh-Marley, P. L., Suzuki, T., Miyata, N., & Dean, D. A. (2008). Microtubule acetylation through HDAC6 inhibition results in increased transfection efficiency. Molecular Therapy, 16, 1841–1847.CrossRefGoogle Scholar
- 86.Schoenbach, K. H., Beebe, S. J., & Buescher, E. S. (2001). Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics, 22, 440–448.CrossRefGoogle Scholar
- 87.Beebe, S. J., White, J., Blackmore, P. F., Deng, Y., Somers, K., & Schoenbach, K. H. (2003). Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA and Cell Biology, 22, 785–796.CrossRefGoogle Scholar