Molecular Biotechnology

, Volume 40, Issue 2, pp 202–213 | Cite as




Biobanks, more formally known as biological resource centers (BRCs), form an “unsung” yet critical component of the infrastructures for scientific research, industry and conservation, without which much of the current scientific activity involving microbial cultures and cell-lines would be effectively impossible. BRCs are de facto depositories of “biological standards” holding taxonomic and other reference strains on which much of the associated published science and industrial standards are built and upon which some significant international commercial and ethical issues rely. The establishment and maintenance of BRCs is a knowledge- and skill-rich activity that in particular requires careful attention to the implementation of reliable preservation technologies and appropriate quality assurance to ensure that recovered cultures and other biological materials perform in the same way as the originally isolated culture or material. There are many types of BRC, which vary both in the kinds of material they hold and in their functional role. All BRCs are expected to provide materials and information of an appropriate quality for their intended use and work to standards relevant to those applications. There are important industrial, biomedical, and conservation issues that can only be addressed through effective and efficient operation of BRCs in the long term. This requires a high degree of expertise in the maintenance and management of collections of biological materials at ultra-low temperatures, or as freeze-dried material, to secure their long-term integrity and relevance for future research, development, and conservation.


Biobanks Biological resource centers Cell lines Cryopreservation Freeze-drying Microorganisms Quality assurance Standardization 


  1. 1.
    Müller, J., Friedl, T., Hepperle, D., Lorenz, M., & Day, J. G. (2005). Distinction of isolates among multiple strains of Chlorella vulgaris (Chlorophyta, Trebouxiophyceae) and testing conspecificity with amplified fragment length polymorphism and ITS RDNA sequences. Journal of Phycology, 41, 1236–1247. doi: 10.1111/j.1529-8817.2005.00134.x.CrossRefGoogle Scholar
  2. 2.
    Polge, C., Smith, A. U., & Parkes, S. (1949). Revival of spermatozoa after dehydration at low temperatures. Nature, 164, 166. doi: 10.1038/164666a0.CrossRefGoogle Scholar
  3. 3.
    Sakai, A. (1966). Survival of plant tissues at super-low temperatures IV, cell survival with rapid cooling and rewarming. Plant Physiology, 41, 1050–1054.CrossRefGoogle Scholar
  4. 4.
    Day, J. G., & Stacey, G. N. (2007). Cryopreservation and freeze-drying protocols. Totowa, NJ: Humana Press.Google Scholar
  5. 5.
    Mutetwa, S. M., & James, E. R. (1984). Cryopreservation of Plasmodium chabaudi. II. Cooling and warming rates. Cryobiology, 21, 552–558. doi: 10.1016/0011-2240(84)90054-3.CrossRefGoogle Scholar
  6. 6.
    Wood, C. B., Pritchard, H. W., & Miller, A. P. (2000). Simultaneous preservation of orchid seed and its fungal symbiont using encapsulation-dehydration is dependent on moisture content and storage temperature. CryoLetters, 21, 125–136.Google Scholar
  7. 7.
    Stacey, G. N., Byrne, E., & Hawkins, J. R. (2007). DNA fingerprinting and characterization of animal cell lines. In R. Poertner (Ed.), Animal cell biotechnology: Methods and protocols (2nd edn., pp. 123–145). Totowa, NJ: Humana Press.Google Scholar
  8. 8.
    Hebert, P. D., Cywinska, A., Ball, S. L., & de Waard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings. Biological Sciences, 270, 313–321. doi: 10.1098/rspb.2002.2218.CrossRefGoogle Scholar
  9. 9.
    Bingen, E. H., Denamur, E., & Elion, J. (1994). Use of ribotyping in epidemiological surveillance of nosocomial outbreaks. Clinical Microbiology Reviews, 7, 311–327.Google Scholar
  10. 10.
    Stacey, G. N. (2002). Standardisation of cell lines. Developments in Biologicals, 111, 259–272.Google Scholar
  11. 11.
    Hay, R. J. (1988). The seed stock concept and quality control for cell lines. Analytical Biochemistry, 171, 225–237. doi: 10.1016/0003-2697(88)90480-0.CrossRefGoogle Scholar
  12. 12.
    Stacey, G. N. (2004). Validation of cell culture media components. Human Fertility, 7, 113–118.Google Scholar
  13. 13.
    Stacey, A., & Stacey, G. N. (2000). Routine quality control testing for cell cultures. In D. Kinchington & R. F. Schinazi (Eds.), Methods in molecular medicine, vol. 24: Antiviral methods and protocols (pp. 27–40). Totowa, NJ: Humana Press.Google Scholar
  14. 14.
    McLean, C. (2000). Contamination detection in animal cell culture. In R. Spier (Ed.), Encyclopedia of cell technology (pp. 586–609). New York: Wiley Interscience.Google Scholar
  15. 15.
    Harding, K. (2004). Genetic integrity of cryopreserved plant cells: A review. CryoLetters, 25, 3–22.Google Scholar
  16. 16.
    Stacey, G. N., Benson, E. E., & Lynch, P. T. (1999). Plant Gene-banking: Agriculture, biotechnology and conservation. Agro Food Industry Hi-Tech, 10, 9–14.Google Scholar
  17. 17.
    WFCC. (1999). World Federation for Culture Collections guidelines for the establishment and operation of collections of cultures of microorganisms, 2nd edn. (ISBN 92-9109-043-3 available from Dr. A. Doyle, Secretary WFCC, The Wellcome Trust, 183 Euston Road, London NW1 2BE, UK).Google Scholar
  18. 18.
    Coecke, S., Balls, M., Bowe, G., Davis, J., Gstraunthaler, G., Hartung, T., et al. (2005). Guidance on good cell culture practice. A report of the second ECVAM task Force on Good Cell Culture Practice. Alternatives to Laboratory Animals, 33, 1–27.Google Scholar
  19. 19.
    Budapest Treaty Regulations. (1977). Budapest Treaty on the international recognition of the deposit of microorganisms for the purposes of patent procedure. 277 (E), World Intellectual Property Organization, Geneva.Google Scholar
  20. 20.
    European Directive 2004/23/CE of the European parliament and the council of March 31st, relating to the establishment of quality and safety norms to donate, to obtain, to assess, to process, to preserve, to store and to distribute cells and human tissues.Google Scholar
  21. 21.
    World Health Organization Expert Committee on Biological Standardization and Executive Board (ECBS). (2005). Requirements for the use of animal cells as in vitro substrates for the production of biologicals. Technical Report Series 927, World Health Organization, Geneva.Google Scholar
  22. 22.
    ICH. (1997). Human Medicines Evaluation Unit: ICH Topic Q 5 D – Quality of biotechnological products: Derivation and characterization of cell substrates used for production of biotechnological/biological products. European Agency for the Evaluation of Medicinal Products, ICH Technical Co-ordination, London.
  23. 23.
    OECD. (2004). Draft advisory document of the OECD working group on the application of GLP principles to in vitro studies. OECD, Paris.Google Scholar
  24. 24.
    Bridge, P. D., Roberts, P. J., Spooner, B. M., & Panchal, G. (2003). On the reliability of published DNA sequences. The New Phytologist, 160, 43–48. doi: 10.1046/j.1469-8137.2003.00861.x.CrossRefGoogle Scholar
  25. 25.
    Tindall, B. J. (2007). Vacuum drying and cryopreservation of prokaryotes. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 73–98). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  26. 26.
    Watanabe, M. M., Nozaki, H., Kasaki, S., Sano, N., Kato, N., Omori, Y., et al. (2005). Threatened state of the Charales in the lakes of Japan. In F. Kasai, K. Kaya, & M. M. Watanabe (Eds.), Algal culture collections and the environment (pp. 217–236). Kanagawa, Japan: Tokai Univ. Press.Google Scholar
  27. 27.
    Benson, E. E., Harding, K., & Johnston, J. W. (2007). Cryopreservation of shoot tips and meristems. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 163–184). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  28. 28.
    Pritchard, H. W. (2007). Cryopreservation of desiccation-tolerant seeds. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 185–202). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  29. 29.
    Curry, M. R. (2007). Cryopreservation of mammalian semen. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 303–312). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  30. 30.
    Fuller, B. J., & Paynter, S. J. (2007). Cryopreservation of mammalian embryos. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 325–339). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  31. 31.
    Stacey, G. N. (2004). Cell line banks in biotechnology and regulatory affairs. In B. Fuller, E. E. Benson, & N. Lane (Eds.), Life in the frozen state (pp. 437–452). Boca Ranton: CRC Press LLC.Google Scholar
  32. 32.
    Lorenz, M., Friedl, T., & Day, J. G. (2004). Perpetual maintenance of actively metabolizing microalgal cultures. In R. A. Andersen (Ed.), Algal culturing techniques (pp. 145–156). New York: Academic Press.Google Scholar
  33. 33.
    Smith, D., & Onions, A. H. S. (1994). The preservation and maintenance of living fungi (2nd edn.). Wallingford, UK: CAB International.Google Scholar
  34. 34.
    Adams, G. (2007). The principles of freeze-drying. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 1–14). Totowa, NJ: Humana Press.Google Scholar
  35. 35.
    Ryan, M. J., & Smith, D. (2007). Cryopreservation and freeze-drying of fungi employing centrifugal and shelf freeze-drying. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 127–140). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  36. 36.
    Adams, G. D. J. (1995). Freeze-drying—The integrated approach (pp. 177–180). Pharmaceutical Manufacturing International.Google Scholar
  37. 37.
    Fleck, R. A., Day, J. G., Clarke, K. J., & Benson, E. E. (1999). Elucidation of the metabolic and structural basis for the cryopreservation recalcitrance of Vaucheria sessilis. CryoLetters, 20, 271–282.Google Scholar
  38. 38.
    Farrant, J. (1980). General observations on cell preservation. In M. Ashwood-Smith & J. Farrant (Eds.), Low temperature preservation in medicine and biology (pp. 1–18). Tonbridge Wells, UK: Pitman Medical.Google Scholar
  39. 39.
    Ashwood-Smith, M., & Farrant, J. (1980). Low temperature preservation in medicine and biology. Tonbridge Wells, UK: Pitman Medical.Google Scholar
  40. 40.
    Arakawa, T., Carpenter, F., Kita, Y. A., & Crowe, I. H. (1990). The basis for toxicity of certain cryoprotectants: a hypothesis. Cryobiology, 27, 401–415. doi: 10.1016/0011-2240(90)90017-X.CrossRefGoogle Scholar
  41. 41.
    Taylor, M. J. (1981). The meaning of pH at low temperature. Cryobiology, 2, 231–239.Google Scholar
  42. 42.
    Greiff, D., & Rightsel, W. A. (1965). Stabilities of suspensions of virus after vacuum sublimation and storage. Cryobiology, 3, 435–443.Google Scholar
  43. 43.
    Greiff, D. (1971). Protein structure and freeze-drying: The effects of residual moisture and gases. Cryobiology, 8, 145–152. doi: 10.1016/0011-2240(71)90022-8.CrossRefGoogle Scholar
  44. 44.
    Bellissent-Funel, M., & Teixera, Q. (1999). Structural and dynamic properties of bulk and confined water additives. In L. Rey & J. C. May (Eds.), Freeze-drying/Lyophilization of pharmaceutical and biological products (pp. 53–77). New York: Marcel Dekker.Google Scholar
  45. 45.
    Adams, G. D. J. (1990). Residual moisture and the freeze-dried product. In Lyophilization technology handbook (pp. 581–604). The Center for Professional Advancement, Academic Center, PO Box H, East Brunswick, NJ.Google Scholar
  46. 46.
    Cox, C. S. (1991). Roles of maillard reactions in disease. London: HMSO Publications.Google Scholar
  47. 47.
    Cowdery, S., Frey, M., Orlowski, S., & Gray, A. (1977). Stability characteristics of freeze-dried human live virus vaccines. In International symposium on freeze-drying of biological products, vol. 36: Developments in biological standards (pp. 297–303). Karger, Basel.Google Scholar
  48. 48.
    Walters, C., Wheeler, L., & Stanwood, P. C. (2004). Longevity of cryogenically stored seeds. Cryobiology, 48, 229–244. doi: 10.1016/j.cryobiol.2004.01.007.CrossRefGoogle Scholar
  49. 49.
    Dando, T. R., & Bousfield, I. J. (1991). Maintenance of industrial and marine bacteria. In B. E. Kirsop & A. Doyle (Eds.), Maintenance of microorganisms and cell cultures (2nd edn., pp. 57–64). London: Academic Press.Google Scholar
  50. 50.
    Jones, D., Pell, P. A., & Sneath, P. H. A. (1991). Maintenance of bacteria on glass beads at −60°C to −76°C. In B. E. Kirsop & A. Doyle (Eds.), Maintenance of microorganisms and cell cultures (2nd edn., pp. 45–50). London: Academic Press.Google Scholar
  51. 51.
    Brown, S., & Day, J. G. (1993). An improved method for the long-term preservation of Naegleria gruberi. CryoLetters, 14, 347–352.Google Scholar
  52. 52.
    Pegg, D. E. (2007). Principles of cryopreservation. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 39–58). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  53. 53.
    Mazur, P. (2004). Principles of cryobiology. In B. Fuller, N. Lane, & E. E. Benson (Eds.), Life in the frozen state (pp. 3–66). Florida: CRC Press.Google Scholar
  54. 54.
    Meryman, H. I., Williams, R. J., St, J., & Douglas, M. (1977). Freezing injury from solution effects and its prevention by natural or artificial cryoprotection. Cryobiology, 14, 287–302. doi: 10.1016/0011-2240(77)90177-8.CrossRefGoogle Scholar
  55. 55.
    Morris, G. J., & Canning, C. E. (1978). The cryopreservation of Euglena gracilis. Journal of General Microbiology, 108, 27–31.Google Scholar
  56. 56.
    Benson, E. E. (2004). Cryoconserving algal and plant diversity: Historical perspectives and future challenges. In B. Fuller, N. Lane, & E. E. Benson (Eds.), Life in the frozen state (pp. 299–328). Florida: CRC Press.Google Scholar
  57. 57.
    Sakai, A. (2004). Plant cryopreservation. In B. Fuller, N. Lane, & E. E. Benson (Eds.), Life in the frozen state (pp. 329–346). Florida: CRC Press LLC.Google Scholar
  58. 58.
    Fabre, J., & Dereuddre, J. (1990). Encapsulation-dehydration: A new approach to cryopreservation of potato shoot-tips. CryoLetters, 11, 413–426.Google Scholar
  59. 59.
    Rudge, R. H. (1991). Maintenance of bacteria by freeze-drying. In B. E. Kirsop & A. Doyle (Eds.), Maintenance of microorganisms and cell cultures (2nd edn., pp. 31–44). London: Academic Press.Google Scholar
  60. 60.
    Hubalek, Z., & Kockova-Kratochvilova, A. (1982). Long term preservation of yeast cultures in liquid nitrogen. Folia Microbiologica, 27, 242–244. doi: 10.1007/BF02877123.CrossRefGoogle Scholar
  61. 61.
    Bond, C. (2007). Freeze-drying yeast cultures. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 99–108). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  62. 62.
    Bond, C. (2007). Cryopreservation of yeast cultures. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 109–118). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  63. 63.
    Day, J. G., Watanabe, M. M., Morris, G. J., Fleck, R. A., & McLellan, M. R. (1997). Long-term viability of preserved eukaryotic algae. Journal of Applied Phycology, 9, 121–127. doi: 10.1023/A:1007991507314.CrossRefGoogle Scholar
  64. 64.
    Broxmeyer, H. E., Srour, E. F., Hangoc, G., Cooper, S., Anderson, S. A., & Bodine, D. M. (2003). High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proceedings of the National Academy of Sciences of the United States of America, 100, 5645–5650. doi: 10.1073/pnas.0237086100.CrossRefGoogle Scholar
  65. 65.
    Sputtek, A. (2007). Cryopreservation of red blood cells and platelets. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 283–302). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  66. 66.
    Spurr, E. E., Wiggins, N. E., Marsden, K. A., Lowenthal, R. M., & Ragg, S. J. (2002). Cryopreserved human haematopoietic stem cells retain engraftment potential after extended (5–14 years) cryostorage. Cryobiology, 44, 210–217. doi: 10.1016/S0011-2240(02)00027-5.CrossRefGoogle Scholar
  67. 67.
    Leibo, S. P., Semple, M. E., & Kroetsch, T. G. (1994). In-vitro fertilization of oocytes by 37-year-old cryopreserved bovine spermatozoa. Theriogenology, 42, 1257–1262. doi: 10.1016/0093-691X(94)90245-E.CrossRefGoogle Scholar
  68. 68.
    Rofeim, O., & Gilbert, B. R. (2005). Long-term cryopreservation of human spermatozoa. Fertility and Sterility, 84, 536–537. doi: 10.1016/j.fertnstert.2005.02.035.CrossRefGoogle Scholar
  69. 69.
    Horne, G., Atkinson, A. D., Pease, E. H. E., Logue, J. P., Brison, D. R., & Lieberman, B. A. (2004). Live birth with semen cryopreserved for 21 years prior to cancer treatment. Human Reproduction (Oxford, England), 19, 1448–1449. doi: 10.1093/humrep/deh249.CrossRefGoogle Scholar
  70. 70.
    Chern, H. T., & Scharp, D. W. (1995). Successful long-term cryopreservation of highly purified canine islets. European Surgical Research, 27, 167–175. doi: 10.1159/000129396.CrossRefGoogle Scholar
  71. 71.
    Fogarty, N. M., Maxwell, W. M. C., Eppleston, J., & Evans, G. (2000). The viability of transferred sheep embryos after long-term cryopreservation. Reproduction, Fertility, and Development, 12, 31–37. doi: 10.1071/RD00020.CrossRefGoogle Scholar
  72. 72.
    Tedder, R. S., Zuckerman, M. A., Goldstone, A. H., et al. (1995). Hepatitis B transmission from a contaminated cryopreservation tank. Lancet, 346, 137–140. doi: 10.1016/S0140-6736(95)91207-X.CrossRefGoogle Scholar
  73. 73.
    Fountain, D., Ralston, M., Higgins, N., Gorlin, J. B., Uhl, L., Wheeler, C., et al. (1997). Liquid nitrogen freezers: A potential source of microbial contamination of hematopoietic stem cell components. Transfusion, 37, 585–591. doi: 10.1046/j.1537-2995.1997.37697335152.x.CrossRefGoogle Scholar
  74. 74.
    Day, J. G., & Brand, J. J. (2005). Cryopreservation methods for maintaining cultures. In R. A. Andersen (Ed.), Algal culturing techniques (pp. 165–187). New York: Academic Press.CrossRefGoogle Scholar
  75. 75.
    Letur-Könirsch, H., Collin, G., Devaux, A., Madelenat, P., Brun-Vezinet, F., Feldmann, G., et al. (2003). Safety of cryopreservation straws for human gametes or embryos: A study with human immunodeficiency virus-1 under cryopreservation conditions. Human Reproduction (Oxford, England), 18, 140–144. doi: 10.1093/humrep/deg001.CrossRefGoogle Scholar
  76. 76.
    Maertens, A., Bourlet, T., Plotton, N., Pozzetto, B., & Levy, R. (2004). Validation of safety procedures for the cryopreservation of semen contaminated with hepatitis C virus in assisted reproductive technology. Human Reproduction (Oxford, England), 19, 1554–1557. doi: 10.1093/humrep/deh275.CrossRefGoogle Scholar
  77. 77.
    Glenister, P. H., Whittingham, D. G., & Lyon, M. F. (1984). Further studies on the effect of radiation during storage of frozen 8-cell mouse embryos at −196 degrees C. Journal of Reproduction and Fertility, 70, 229–234.CrossRefGoogle Scholar
  78. 78.
    Stacey, G. N. (1999). Control of contamination in cell and tissue banks. CryoLetters, 20, 141–146.Google Scholar
  79. 79.
    Streit, S., Bock, F., Pirk, C. W., & Tautz, J. (2003). Automatic life-long monitoring of individual insect behaviour now possible. Zoology (Jena), 106, 169–171.Google Scholar
  80. 80.
    Kirkwood, T. B. L. (1984). Design and analysis of accelerated degradation tests for the stability of biological standards, III. Principles of design. Journal of Biological Standardization, 12, 215–224. doi: 10.1016/S0092-1157(84)80056-6.CrossRefGoogle Scholar
  81. 81.
    Ratajczak, M. Z., Kegnow, D. A., Kuczynski, W. I., Ratajczak, J., & Gewitz, A. M. (1994). The storage of cells from different tumor lines in a mechanical freezer at −80 degrees C. Comparison to cryopreservation in liquid nitrogen. Materia Medica Polona. Polish Journal of Medicine and Pharmacy, 26, 69–72.Google Scholar
  82. 82.
    Pearson, B. M., Jackman, P. J. H., Painting, K. A., & Morris, G. J. (1990). Stability of genetically manipulated yeasts under different cryopreservation regimes. CryoLetters, 11, 205–210.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Culture Collection of Algae and ProtozoaScottish Association for Marine Science, Dunstaffnage Marine LaboratoryArgyllUK
  2. 2.Division of Cell Biology and ImagingNational Institute for Biological Standards and ControlHertsUK

Personalised recommendations