Advertisement

Molecular Biotechnology

, Volume 41, Issue 1, pp 35–41 | Cite as

Enantioselective Nitrilase from Pseudomonas putida: Cloning, Heterologous Expression, and Bioreactor Studies

  • Anirban Banerjee
  • Sachin Dubey
  • Praveen Kaul
  • Brajesh Barse
  • Markus Piotrowski
  • U. C. BanerjeeEmail author
Research

Abstract

Nitrilases have attracted tremendous attention for the preparation of optically pure carboxylic acids. This article aims to address the production and utilization of a highly enantioselective nitrilase from Pseudomonas putida MTCC 5110 for the hydrolysis of racemic mandelonitrile to (R)-mandelic acid. The nitrilase gene from P. putida was cloned in pET 21b(+) and over-expressed as histidine-tagged protein in Escherichia coli. The histidine-tagged enzyme was purified from crude cell extracts of IPTG-induced cells of E. coli BL21 (DE3). Inducer replacement studies led to the identification of lactose as a suitable and cheap alternative to the costly IPTG. Effects of medium components, various physico-chemical, and process parameters (pH, temperature, aeration, and agitation) for the production of nitrilase by engineered E. coli were optimized and scaled up to a laboratory scale bioreactor (6.6 l). Finally, the recombinant E. coli whole-cells were utilized for the production of (R)-(−)-mandelic acid.

Keywords

Nitrilase cloning Heterologous expression Pseudomonas putida (R)-(−)-mandelic acid Bioreactor studies 

Notes

Acknowledgments

Anirban Banerjee gratefully acknowledges financial assistance provided by CSIR Govt. of India, and DAAD Fellowship, Sachin Dubey and Praveen Kaul gratefully acknowledge financial assistance provided by DBT and CSIR, Govt. of India. This is NIPER communication number 413.

References

  1. 1.
    Kobayashi, M., & Shimizu, S. (2000). Nitrile hydrolases. Current Opinion Chemical Biology, 4, 95–102.CrossRefGoogle Scholar
  2. 2.
    Banerjee, A., Sharma, R., & Banerjee, U. C. (2002). The nitrile degrading enzymes: Current status and future prospects. Applied Microbiology and Biotechnology, 60, 33–44.CrossRefGoogle Scholar
  3. 3.
    Banerjee, A., Kaul, P., Sharma, R., & Banerjee, U. C. (2003). A high-throughput amenable colorimetric assay for enantioselective screening of nitrilase producing microorganisms. Journal of Biomolecular Screening, 8, 559–565.CrossRefGoogle Scholar
  4. 4.
    Kaul, P., Banerjee, A., & Banerjee, U. C. (2004). Screening for enantioselective nitrilases: Kinetic resolution of racemic mandelonitrile to (R)-(−)-mandelic acid by new bacterial isolates. Tetrahedron: Asymmetry, 15, 207–211.CrossRefGoogle Scholar
  5. 5.
    Kaul, P., Banerjee, A., & Banerjee, U. C. (2006). Enantioselective nitrile hydrolysis by immobilized whole-cell biocatalyst. Biomacromolecules, 7, 1536–1541.CrossRefGoogle Scholar
  6. 6.
    Banerjee, A., Kaul, P., & Banerjee, U. C. (2006). Enhancing the catalytic potential of nitrilase from Pseudomonas putida for enantioselective nitrile hydrolysis. Applied Microbiology and Biotechnology, 72, 77–87.CrossRefGoogle Scholar
  7. 7.
    Osprian, I., Jarret, C., Straussm, U., Kroutil, W., Orru, R., Felfer, U., et al. (1999). Large-scale preparation of a nitrile-hydrolysing biocatalyst: Rhodococcus R 312 (CBS 717.73). Journal of Molecular Catalysis B Enzymatic, 6, 555–560.CrossRefGoogle Scholar
  8. 8.
    Aav, R., Parve, O., Pehk, T., Claesson, A., & Martin, I. (1999). Tetrahedron: Asymmetry preparation of highly enantiopure stereoisomers of 1-(2, 6-dimethylphenoxy)-2-aminopropane (Mexiletine). Tetrahedron: Asymmetry, 10, 3033–3038.CrossRefGoogle Scholar
  9. 9.
    Matsugi, M., Fakuda, N., Maguruma, Y., Yamaguchi, T., Minamikawa, J., & Otsuka, S. (2001). Catalytic assymetric oxidation of sulfide with titanium-mandelic acid complex: Practical synthesis of (S)-3-[1-(2-methylphenyl) imidazole-2-ylsulfinyl]-propan-1-ol, a key intermediate of OPC 29030. Tetrahedron, 57, 2739–2744.CrossRefGoogle Scholar
  10. 10.
    Terreni, M., Pegani, G., Ubiali, D., Fernandez, R., Mateo, C., & Guisán, J. M. (2001). Modulation of penicillin acylase properties via immobilization techniques: One pot chemo-enzymatic synthesis of cephamandole from cephalosporin C. Bioorganic and Medicinal Chemistry Letters, 11, 2429–2432.CrossRefGoogle Scholar
  11. 11.
    Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., et al. (1987). Current protocols in molecular biology (Vol. I). New York: Wiley.Google Scholar
  12. 12.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.Google Scholar
  13. 13.
    Miller, G. L. (1959). Use of dinitrosalicylic reagent for the determination of reducing sugar. Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  14. 14.
    Nagasawa, T., Mauger, J., & Yamada, H. (1990). A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3, purification and characterization. European Journal of Biochemistry, 194, 765–772.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Anirban Banerjee
    • 1
  • Sachin Dubey
    • 1
  • Praveen Kaul
    • 1
  • Brajesh Barse
    • 1
  • Markus Piotrowski
    • 2
  • U. C. Banerjee
    • 1
    Email author
  1. 1.Department of Pharmaceutical Technology (Biotechnology)National Institute of Pharmaceutical Education and ResearchPunjabIndia
  2. 2.Department of Plant PhysiologyRuhr-UniversitätBochumGermany

Personalised recommendations