Molecular Biotechnology

, Volume 40, Issue 2, pp 151–160 | Cite as

Studies on mRNA Electroporation of Immature and Mature Dendritic Cells: Effects on their Immunogenic Potential

Research

Abstract

Previous studies have shown that mRNA-electroporated dendritic cells (DCs) are able to process and present tumor-associated antigens, leading to the activation of tumor-specific T cells in vitro and in vivo. However, the optimal maturation state of antigen loading and half-life of the mRNA-translated protein product and its immunogenic epitopes are significant parameters, which needs to be clarified in order to establish an effective electroporation protocol. In addition, despite extensive experimental investigations and their widespread application in research and clinical environments, little is known of the extent to which the immunological properties of DCs are influenced by electrical fields of critical strengths. We found that the mRNA transfection of DCs after maturation with short and low-voltage square-wave electrical pulses resulted in higher level of antigen expression and viability in addition to higher T-cell stimulatory ability compared to transfection of DCs prior to maturation. Mature mRNA-electroporated DCs showed long-lived expression of EGFP and were able to stimulate influenza matrix protein M1 (M1)-specific T cells up to 24 h after electroporation. However, when DCs were subjected to increasing electrical pulses the level of transgene expression was four-fold upregulated, equipping these DCs to be more potent in inducing M1-specific T cells. Also, the application of long electrical pulses induced further upregulation of HLA-DR, CD80, and CD86 expression in mature DCs, but did not promote phenotypic or functional maturation in immature DCs. These findings support the concept of mRNA transfection of DCs after maturation and also highlight the possibility to use long electrical pulses for further improvement of the immune responses by mRNA-transfected DCs.

Keywords

Dendritic cells mRNA transfection Electroporation Immunotherapy Gene therapy 

Abbreviations

DCs

Dendritic cells

EGFP

Enhanced green fluorescence protein

mAbs

Monoclonal antibodies

M1

Influenza matrix protein M1

PBMCs

Peripheral blood mononuclear cells

Notes

Acknowledgments

We would like to thank Dr. G. Gaudernack (The Norwegian Radium Hospital, Oslo, Norway) and Dr. N. Schaft (University Hospital Erlangen, Erlangen, Germany) for providing the plasmids EGFP/pCIpA102 and pGEM4Z/M1, respectively. This work was supported by the Aase and Ejnar Danielsens Foundation and by various grants from the Cancer Foundation, Grosserer L. F. Foghts and Grosserer Valdemar Foersom and Wife’s Foundations.

References

  1. 1.
    Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392, 245–252. doi:10.1038/32588.CrossRefGoogle Scholar
  2. 2.
    Lanzavecchia, A., & Sallusto, F. (2001). Regulation of T cell immunity by dendritic cells. Cell, 106, 263–266. doi:10.1016/S0092-8674(01)00455-X.CrossRefGoogle Scholar
  3. 3.
    Kyte, J. A., Mu, L., Aamdal, S., Kvalheim, G., Dueland, S., Hauser, M., et al. (2006). Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Therapy, 13, 905–918. doi:10.1038/sj.cgt.7700961.CrossRefGoogle Scholar
  4. 4.
    Mu, L. J., Kyte, J. A., Kvalheim, G., Aamdal, S., Dueland, S., Hauser, M., et al. (2005). Immunotherapy with allotumour mRNA-transfected dendritic cells in androgen-resistant prostate cancer patients. British Journal of Cancer, 93, 749–756. doi:10.1038/sj.bjc.6602761.CrossRefGoogle Scholar
  5. 5.
    Su, Z., Dannull, J., Yang, B. K., Dahm, P., Coleman, D., Yancey, D., et al. (2005). Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. Journal of Immunology (Baltimore, Md. 1950), 174, 3798–3807.Google Scholar
  6. 6.
    Dannull, J., Su, Z., Rizzieri, D., Yang, B. K., Coleman, D., Yancey, D., et al. (2005). Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. The Journal of Clinical Investigation, 115, 3623–3633. doi:10.1172/JCI25947.CrossRefGoogle Scholar
  7. 7.
    Schaft, N., Dorrie, J., Thumann, P., Beck, V. E., Muller, I., Schultz, E. S., et al. (2005). Generation of an optimized polyvalent monocyte-derived dendritic cell vaccine by transfecting defined RNAs after rather than before maturation. Journal of Immunology (Baltimore, Md.: 1950), 174, 3087–3097.Google Scholar
  8. 8.
    Tuyaerts, S., Michiels, A., Corthals, J., Bonehill, A., Heirman, C., de Greef, C., et al. (2003). Induction of Influenza Matrix Protein 1 and MelanA-specific T lymphocytes in vitro using mRNA-electroporated dendritic cells. Cancer Gene Therapy, 10, 696–706. doi:10.1038/sj.cgt.7700622.CrossRefGoogle Scholar
  9. 9.
    Van Tendeloo, V. F., Ponsaerts, P., Lardon, F., Nijs, G., Lenjou, M., Van Broeckhoven, C., et al. (2001). Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: Superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood, 98, 49–56. doi:10.1182/blood.V98.1.49.CrossRefGoogle Scholar
  10. 10.
    Saeboe-Larssen, S., Fossberg, E., & Gaudernack, G. (2002). mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). Journal of Immunological Methods, 259, 191–203. doi:10.1016/S0022-1759(01)00506-3.CrossRefGoogle Scholar
  11. 11.
    Boczkowski, D., Nair, S. K., Nam, J. H., Lyerly, H. K., & Gilboa, E. (2000). Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Research, 60, 1028–1034.Google Scholar
  12. 12.
    Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C., & Amigorena, S. (2002). Antigen presentation and T cell stimulation by dendritic cells. Annual Review of Immunology, 20, 621–667. doi:10.1146/annurev.immunol.20.100301.064828.CrossRefGoogle Scholar
  13. 13.
    Kalady, M. F., Onaitis, M. W., Padilla, K. M., Emani, S., Tyler, D. S., & Pruitt, S. K. (2002). Enhanced dendritic cell antigen presentation in RNA-based immunotherapy. Journal of Surgical Research, 105, 17–24. doi:10.1006/jsre.2002.6435.CrossRefGoogle Scholar
  14. 14.
    Michiels, A., Tuyaerts, S., Bonehill, A., Corthals, J., Breckpot, K., Heirman, C., Van Meirvenne, S., Dullaers, M., Allard, S., Brasseur, F., van der, B. P., & Thielemans, K. (2005). Electroporation of immature and mature dendritic cells: implications for dendritic cell-based vaccines. Gene Therapy, 12, 772–782. doi:10.1038/sj.gt.3302471.CrossRefGoogle Scholar
  15. 15.
    Svane, I. M., Pedersen, A. E., Johansen, J. S., Johnsen, H. E., Nielsen, D., Kamby, C., et al. (2007). Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers. Cancer Immunology, Immunotherapy, 56, 1485–1499. doi:10.1007/s00262-007-0293-4 CrossRefGoogle Scholar
  16. 16.
    Nestle, F. O., Alijagic, S., Gilliet, M., Sun, Y., Grabbe, S., Dummer, R., et al. (1998). Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Medicine, 4, 328–332. doi:10.1038/nm0398-328.CrossRefGoogle Scholar
  17. 17.
    Tuting, T., Wilson, C. C., Martin, D. M., Kasamon, Y. L., Rowles, J., Ma, D. I., Slingluff, C.L. Jr., Wagner, S. N., van der, B. P., Baar, J., Lotze, M. T., & Storkus, W. J. (1998). Autologous human monocyte-derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T cell responses in vitro: enhancement by cotransfection of genes encoding the Th1-biasing cytokines IL-12 and IFN-alpha. Journal of Immunology (Baltimore, Md.: 1950), 160, 1139–1147.Google Scholar
  18. 18.
    Kotera, Y., Shimizu, K., & Mule, J. J. (2001). Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Research, 61, 8105–8109.Google Scholar
  19. 19.
    Gong, J., Avigan, D., Chen, D., Wu, Z., Koido, S., Kashiwaba, M., et al. (2000). Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 2715–2718. doi:10.1073/pnas.050587197.CrossRefGoogle Scholar
  20. 20.
    Dullaers, M., Breckpot, K., Van Meirvenne, S., Bonehill, A., Tuyaerts, S., Michiels, A., Straetman, L., Heirman, C., de Greef, C., van der, B. P., & Thielemans, K. (2004). Side-by-side comparison of lentivirally transduced and mRNA-electroporated dendritic cells: Implications for cancer immunotherapy protocols. Molecular Therapy, 10, 768–779. doi:10.1016/j.ymthe.2004.07.017.CrossRefGoogle Scholar
  21. 21.
    Nair, S. K., Hull, S., Coleman, D., Gilboa, E., Lyerly, H. K., & Morse, M. A. (1999). Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA. International Journal of Cancer, 82, 121–124. doi:10.1002/(SICI)1097-0215(19990702)82:1<121::AID-IJC20>3.0.CO;2-X.Google Scholar
  22. 22.
    Strobel, I., Berchtold, S., Gotze, A., Schulze, U., Schuler, G., & Steinkasserer, A. (2000). Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes. Gene Therapy, 7, 2028–2035. doi:10.1038/sj.gt.3301326.CrossRefGoogle Scholar
  23. 23.
    Chapatte, L., Ayyoub, M., Morel, S., Peitrequin, A. L., Levy, N., Servis, C., et al. (2006). Processing of tumor-associated antigen by the proteasomes of dendritic cells controls in vivo T-cell responses. Cancer Research, 66, 5461–5468. doi:10.1158/0008-5472.CAN-05-4310.CrossRefGoogle Scholar
  24. 24.
    Storni, T., Ruedl, C., Renner, W. A., & Bachmann, M. F. (2003). Innate immunity together with duration of antigen persistence regulate effector T cell induction. Journal of Immunology (Baltimore, Md.: 1950), 171, 795–801.Google Scholar
  25. 25.
    Mu, L. J., Gaudernack, G., Saeboe-Larssen, S., Hammerstad, H., Tierens, A., & Kvalheim, G. (2003). A protocol for generation of clinical grade mRNA-transfected monocyte-derived dendritic cells for cancer vaccines. Scandinavian Journal of Immunology, 58, 578–586. doi:10.1046/j.1365-3083.2003.01333.x.CrossRefGoogle Scholar
  26. 26.
    Lundqvist, A., Noffz, G., Pavlenko, M., Saeboe-Larssen, S., Fong, T., Maitland, N., et al. (1997). Nonviral and viral gene transfer into different subsets of human dendritic cells yield comparable efficiency of transfection. Journal of Immunotherapy, 25, 445–454. doi:10.1097/00002371-200211000-00001.CrossRefGoogle Scholar
  27. 27.
    Ueno, H., Tcherepanova, I., Reygrobellet, O., Laughner, E., Ventura, C., Palucka, A. K., et al. (2004). Dendritic cell subsets generated from CD34+ hematopoietic progenitors can be transfected with mRNA and induce antigen-specific cytotoxic T cell responses. Journal of Immunological Methods, 285, 171–180. doi:10.1016/j.jim.2003.11.012.CrossRefGoogle Scholar
  28. 28.
    Basu, S., & Srivastava, P. K. (2003). Fever-like temperature induces maturation of dendritic cells through induction of hsp90. International Immunology, 15, 1053–1061. doi:10.1093/intimm/dxg104.CrossRefGoogle Scholar
  29. 29.
    Zheng, H., Benjamin, I. J., Basu, S., & Li, Z. (2003). Heat shock factor 1-independent activation of dendritic cells by heat shock: Implication for the uncoupling of heat-mediated immunoregulation from the heat shock response. European Journal of Immunology, 33, 1754–1762. doi:10.1002/eji.200323687.CrossRefGoogle Scholar
  30. 30.
    MacAry, P. A., Lindsay, M., Scott, M. A., Craig, J. I., Luzio, J. P., & Lehner, P. J. (2001). Mobilization of MHC class I molecules from late endosomes to the cell surface following activation of CD34-derived human Langerhans cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 3982–3987. doi:10.1073/pnas.071477498.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Department of Hematology, Center for Cancer Immune Therapy (CCIT)University Hospital HerlevCopenhagenDenmark
  2. 2.Department of OncologyUniversity Hospital HerlevCopenhagenDenmark

Personalised recommendations