Molecular Biotechnology

, Volume 40, Issue 2, pp 136–143 | Cite as

The Kinetics of Polyethylenimine-Mediated Transfection in Suspension Cultures of Chinese Hamster Ovary Cells

  • Martin Bertschinger
  • Arnaud Schertenleib
  • Jean Cevey
  • David L. Hacker
  • Florian M. Wurm


The kinetics of polyethylenimine (PEI)-mediated gene transfer at early times after transfection of Chinese hamster ovary (CHO) cell in suspension were investigated using a novel in vitro assay. Addition of an excess of competitor DNA to the culture medium at various times after the initiation of transfection inhibited further cellular uptake of PEI–DNA particles. Using this approach, a constant rate of particle uptake was observed during the first 60 min of transfection at a PEI:DNA ratio of 2:1 (w/w) and a cell density of 2 × 106 cells/ml under serum-free conditions. The uptake rate declined considerably during the next 2 h of transfection. Both the rate and the level of PEI–DNA uptake in serum-free minimal medium were found to be dependent on the PEI–DNA ratio, the cell density at the time of transfection, and the extent of particle aggregation. These studies of the early phase of PEI-mediated transfection are expected to lead to further opportunities for optimization of gene transfer to suspension cultures of mammalian cells for the purpose of large-scale transient recombinant protein production.


Transfection Polyethylenimine Plasmid DNA Mammalian cells 



We thank Dr. Lucia Baldi for critically reading the manuscript. Financial support was provided by the Swiss Innovation Promotion Agency (KTI/CTI).


  1. 1.
    Pham, P. L., Kamen, A., & Durocher, Y. (2006). Large-scale transfection of mammalian cells for the fast production of recombinant proteins. Molecular Biotechnology, 34, 225–237. doi: 10.1385/MB:34:2:225.CrossRefGoogle Scholar
  2. 2.
    Baldi, L., Hacker, D. L., Adam, M., & Wurm, F. M. (2007). Recombinant protein production by large-scale transient gene expression in mammalian cells: State of the art and future perspectives. Biotechnological Letters, 29, 677–684. doi: 10.1007/s10529-006-9297-y.CrossRefGoogle Scholar
  3. 3.
    Boussif, O., Lezoualc’h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., et al. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America, 92, 7297–7301. doi: 10.1073/pnas.92.16.7297.CrossRefGoogle Scholar
  4. 4.
    Pollard, H., Remy, J. S., Loussouarn, G., Demolombe, S., Behr, J. P., & Escande, D. (1998). Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. Journal of Biological Chemistry, 273, 7507–7511. doi: 10.1074/jbc.273.13.7507.CrossRefGoogle Scholar
  5. 5.
    Godbey, W. T., Wu, K. K., & Mikos, A. G. (1999). Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proceedings of the National Academy of Sciences of the United States of America, 96, 5177–5181. doi: 10.1073/pnas.96.9.5177.CrossRefGoogle Scholar
  6. 6.
    Godbey, W. T., Barry, M. A., Saggau, P., Wu, K. K., & Mikos, A. G. (2000). Poly(ethylenimine)-mediated transfection: a new paradigm for gene delivery. Journal of Biomedical Materials Research, 51, 321–328. doi: 10.1002/1097-4636(20000905)51:3<321::AID-JBM5>3.0.CO;2-R.CrossRefGoogle Scholar
  7. 7.
    Choosakoonkriang, S., Lobo, B. A., Koe, G. S., Koe, J. G., & Middaugh, C. R. (2003). Biophysical characterization of PEI/DNA complexes. Journal of Pharmaceutical Sciences, 92, 1710–1722. doi: 10.1002/jps.10437.CrossRefGoogle Scholar
  8. 8.
    Demeneix, B., & Behr, J. P. (2005). Polyethylenimine (PEI). Advances in Genetics, 53, 217–230.CrossRefGoogle Scholar
  9. 9.
    Akinc, A., Thomas, M., Klibanov, A., & Langer, R. (2005). Exploring polyethylenime-mediated DNA transfection and the proton sponge hypothesis. Journal of Gene Medicine, 7, 657–663. doi: 10.1002/jgm.696.CrossRefGoogle Scholar
  10. 10.
    Bertschinger, M., Schertenleib, A., Backliwal, G., Jordan, M., Hacker, D. L., & Wurm, F. M. (2006). Dissassembly of polyethylenimine-DNA particles in vitro: Implications for polyethylenimine-mediated DNA delivery. Journal of Controlled Release, 116, 96–104. doi: 10.1016/j.jconrel.2006.09.006.CrossRefGoogle Scholar
  11. 11.
    Thomas, M., Lu, J. J., Ge, Q., Zhang, C., Chen, J., & Klibanov, A. M. (2005). Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proceedings of the National Academy of Sciences of the United States of America, 102, 5679–5684. doi: 10.1073/pnas.0502067102.CrossRefGoogle Scholar
  12. 12.
    Wightman, L., Kircheis, R., Rossler, V., Carotta, S., Ruzicka, R., Kursa, M., et al. (2001). Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. Journal of Gene Medicine, 3, 362–372. doi: 10.1002/jgm.187.CrossRefGoogle Scholar
  13. 13.
    Wurm, F., & Bernard, A. (1999). Large-scale transient expression in mammalian cells for recombinant protein production. Current Opinion in Biotechnology, 10, 156–159. doi: 10.1016/S0958-1669(99)80027-5.CrossRefGoogle Scholar
  14. 14.
    Bertschinger, M., Burki, C., Backliwal, G., Hacker, D. L., Jordan, M., & Wurm, F. M. (2006). Polyethylenimine-based quality control assay for plasmid DNA. Analytical Biochemistry, 356, 309–311. doi: 10.1016/j.ab.2006.05.002.CrossRefGoogle Scholar
  15. 15.
    Muller, N., Girard, P., Hacker, D. L., Jordan, M., & Wurm, F. M. (2005). Orbital shaker technology for the cultivation of mammalian cells in suspension. Biotechnology and Bioengineering, 89, 400–406. doi: 10.1002/bit.20358.CrossRefGoogle Scholar
  16. 16.
    Stettler, M., Jaccard, N., Hacker, D., DeJesus, M., Wurm, F. M., & Jordan, M. (2006). New disposable tubes for rapid and precise biomass assessment for suspension cultures of mammalian cells. Biotechnology and Bioengineering, 95, 1228–1233. doi: 10.1002/bit.21071.CrossRefGoogle Scholar
  17. 17.
    Derouazi, M., Girard, P., Van Tilborgh, F., Iglesias, K., Muller, N., Bertschinger, M., et al. (2004). Serum-free large-scale transient transfection of CHO cells. Biotechnology and Bioengineering, 87, 537–545. doi: 10.1002/bit.20161.CrossRefGoogle Scholar
  18. 18.
    Hunt, L., Jordan, M., DeJesus, M., & Wurm, F. M. (1999). GFP-expressing mammalian cells for fast, sensitive, noninvasive cell growth assessment in a kinetic mode. Biotechnology and Bioengineering, 65, 201–205. doi: 10.1002/(SICI)1097-0290(19991020)65:2<201::AID-BIT10>3.0.CO;2-H.CrossRefGoogle Scholar
  19. 19.
    Boeckle, S., von Gersdorff, K., van der Piepen, S., Culmsee, C., Wagner, E., & Ogris, M. (2004). Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. Journal of Gene Medicine, 6, 1102–1111. doi: 10.1002/jgm.598.CrossRefGoogle Scholar
  20. 20.
    Kichler, A., Leborgne, C., Coeytaux, E., & Danos, O. (2001). Polyethylenimine-mediated gene delivery: A mechanistic study. Journal of Gene Medicine, 3, 135–144. doi: 10.1002/jgm.173.CrossRefGoogle Scholar
  21. 21.
    Fujimoto, L. M., Roth, R., Heuser, J. E., & Schmid, S. L. (2000). Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic, 1, 161–171. doi: 10.1034/j.1600-0854.2000.010208.x.CrossRefGoogle Scholar
  22. 22.
    Backliwal, G., Hildinger, M., Hasija, V., & Wurm, F. M. (2007). High-density transfection with HEK-293 cells allows doubling of transient titers and removes need for a priori DNA complex formation with PEI. Biotechnology and Bioengineering, 99, 721–727. doi: 10.1002/bit.21596.CrossRefGoogle Scholar
  23. 23.
    Bertschinger, M., Chaboche, S., Jordan, M., & Wurm, F. M. (2004). A spectrophotometric assay for the quantification of polyethylenimine in DNA nanoparticles. Analytical Biochemistry, 334, 196–198. doi: 10.1016/j.ab.2004.07.020.CrossRefGoogle Scholar
  24. 24.
    Clamme, J. P., Krishnamoorthy, G., & Mely, Y. (2003). Intracellular dynamics of the gene delivery vehicle polyethylenimine during transfection: investigation by two-photon fluorescence correlation spectroscopy. Biochimica et Biophysica Acta, 1617, 52–61. doi: 10.1016/j.bbamem.2003.09.002.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Martin Bertschinger
    • 1
    • 2
  • Arnaud Schertenleib
    • 1
  • Jean Cevey
    • 1
  • David L. Hacker
    • 1
  • Florian M. Wurm
    • 1
  1. 1.Laboratory of Cellular BiotechnologyInstitute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Glenmark Pharmaceuticals SALa Chaux-de-FondsSwitzerland

Personalised recommendations