Molecular Biotechnology

, Volume 39, Issue 2, pp 97–104 | Cite as

Rational Vector Design for Efficient Non-viral Gene Delivery: Challenges Facing the Use of Plasmid DNA

  • Juergen MairhoferEmail author
  • Reingard Grabherr


Although non-viral gene delivery is a very straightforward technology, there are currently no FDA-approved gene medicinal products available. Therefore, improving potency, safety, and efficiency of current plasmid DNA vectors will be a major task for the near future. This article will provide an overview on factors influencing production yield and quality as well as safety issues that emerge from the vector design itself. Special focus will be on generating bacterial pDNA vectors by circumventing the use of antibiotic resistance genes, to generate safer gene medicinal products as well as smaller, more efficient DNA vectors.


Gene delivery Non-viral Transient protein expression Vector design Gene therapy DNA vaccines Plasmid DNA DNA structure Plasmid size Bacterial minimal vector Antibiotic resistance gene 


  1. 1.
    Thomas, C., Ehrhardt, A., & Kay, M. (2003). Progress and problems with the use of viral vectors for gene therapy. Nature Reviews. Genetics, 4, 346–358.PubMedCrossRefGoogle Scholar
  2. 2.
    Schalk, J., Mooi, F., Berbers, G., van Aerts, L., Ovelgönne, H., & Kimman, T. (2006). Preclinical and clinical safety studies on DNA vaccines. Human Vaccines, 2, 45–53.PubMedGoogle Scholar
  3. 3.
    Hoare, M., Levy, M., Bracewell, D., Doig, S., Kong, S., Titchener-Hooker, N., Ward, J., & Dunnill, P. (2005). Bioprocess engineering issues that would be faced in producing a DNA vaccine at up to 100 m3 fermentation scale for an influenza pandemic. Biotechnology Progress, 21, 1577–1592.PubMedCrossRefGoogle Scholar
  4. 4.
    Makrides, S. (1999). Components of vectors for gene transfer and expression in mammalian cells. Protein Expression and Purification, 17, 183–202.PubMedCrossRefGoogle Scholar
  5. 5.
    Rodríguez, E. (2004). Nonviral DNA vectors for immunization and therapy: design and methods for their obtention. Journal of Molecular Medicine, 82, 500–509.PubMedCrossRefGoogle Scholar
  6. 6.
    Wang, A., Quigley, G., Kolpak, F., Crawford, J., van Boom, J., van der Marel, G., & Rich, A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 282, 680–686.PubMedCrossRefGoogle Scholar
  7. 7.
    Paddock, G., & Abelson, J. (1975). Nucleotide sequence determination of bacteriophage T2 and T6 species I ribonucleic acids. Journal of Biological Chemistry, 250, 4207–4219.PubMedGoogle Scholar
  8. 8.
    Allemand, J., Bensimon, D., Lavery, R., & Croquette, V. (1998). Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proceedings of the National Academy of Sciences of the United States of America, 95, 14152–14157.PubMedCrossRefGoogle Scholar
  9. 9.
    Hayashi G., Hagihara M., & Nakatani, K. (2005). Application of L-DNA as a molecular tag. Nucleic Acids Symposium Series (Oxf), 49, 261–262.CrossRefGoogle Scholar
  10. 10.
    Mirkin, S., Lyamichev, V., Drushlyak, K., Dobrynin, V., Filippov, S., & Frank-Kamenetskii, M. (1987). DNA H form requires a homopurine-homopyrimidine mirror repeat. Nature, 330, 495–497.PubMedCrossRefGoogle Scholar
  11. 11.
    Vargason, J., Eichman, B., & Ho, P. (2000). The extended and eccentric E-DNA structure induced by cytosine methylation or bromination. Nature Structural Biology, 7, 758–761.PubMedCrossRefGoogle Scholar
  12. 12.
    Arnott, S., Chandrasekaran, R., Hukins, D., Smith, P., & Watts, L. (1974). Structural details of double-helix observed for DNAs containing alternating purine and pyrimidine sequences. Journal of Molecular Biology, 88, 523–533.PubMedCrossRefGoogle Scholar
  13. 13.
    Marvin, D., Spencer, M., Wilkins, M., & Hamilton, L. (1961). The molecular configuration of deoxyribonucleic acid III. X-ray diffraction study of the C form of the lithium salt. Journal of Molecular Biology, 3, 547–565.PubMedCrossRefGoogle Scholar
  14. 14.
    Arnott, S. (2006). Historical article: DNA polymorphism and the early history of the double helix. Trends in Biochemical Sciences, 31, 349–354.PubMedCrossRefGoogle Scholar
  15. 15.
    Sinden, R. R. (1994). DNA structure and function. San Diego: Academic Press.Google Scholar
  16. 16.
    Cooke, J., McKie, E., Ward, J., & Keshavarz-Moore, E. (2004). Impact of intrinsic DNA structure on processing of plasmids for gene therapy and DNA vaccines. Journal of Biotechnology, 114, 239–254.PubMedCrossRefGoogle Scholar
  17. 17.
    Cherng, J., Schuurmans-Nieuwenbroek, N., Jiskoot, W., Talsma, H., Zuidam, N., Hennink, W., & Crommelin, D. (1999). Effect of DNA topology on the transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid complexes. Journal of Controlled Release, 60, 343–353.PubMedCrossRefGoogle Scholar
  18. 18.
    Ussery, D., Soumpasis, D., Brunak, S., Staerfeldt, H., Worning, P., & Krogh, A. (2002). Bias of purine stretches in sequenced chromosomes. Computers & Chemistry, 26, 531–541.CrossRefGoogle Scholar
  19. 19.
    Samadashwily, G., Raca, G., & Mirkin, S. (1997). Trinucleotide repeats affect DNA replication in vivo. Nature Genetics, 17, 298–304.PubMedCrossRefGoogle Scholar
  20. 20.
    Williams, J., Luke, J., Johnson, L., & Hodgson, C. (2006). pDNAVACCultra vector family: high throughput intracellular targeting DNA vaccine plasmids. Vaccine, 24, 4671–4676.PubMedCrossRefGoogle Scholar
  21. 21.
    Summers, D. (1998). Timing, self-control and a sense of direction are the secrets of multicopy plasmid stability. Molecular Microbiology, 29, 1137–1145.PubMedCrossRefGoogle Scholar
  22. 22.
    Summers, D., & Sherratt, D. (1984). Multimerization of high copy number plasmids causes instability: CoIE1 encodes a determinant essential for plasmid monomerization and stability. Cell, 36, 1097–1103.PubMedCrossRefGoogle Scholar
  23. 23.
    Engels, P., & Meyer, P. (1993). Inactivation of the transcriptional-dependent inhibition of plasmid replication: a selection method for cloning large DNA fragments. Biotechniques, 14, 324–325.PubMedGoogle Scholar
  24. 24.
    Kreiss, P., Cameron, B., Rangara, R., Mailhe, P., Aguerre-Charriol, O., Airiau, M., Scherman, D., Crouzet, J., & Pitard, B. (1999). Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Research, 27, 3792–3798.PubMedCrossRefGoogle Scholar
  25. 25.
    Lukacs, G., Haggie, P., Seksek, O., Lechardeur, D., Freedman, N., & Verkman, A. (2000). Size-dependent DNA mobility in cytoplasm and nucleus. Journal of Biological Chemistry, 275, 1625–1629.PubMedCrossRefGoogle Scholar
  26. 26.
    Pollard, H., Remy, J., Loussouarn, G., Demolombe, S., Behr, J., & Escande, D. (1998). Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. Journal of Biological Chemistry, 273, 7507–7511.PubMedCrossRefGoogle Scholar
  27. 27.
    Yin, W., Xiang, P., & Li, Q. (2005). Investigations of the effect of DNA size in transient transfection assay using dual luciferase system. Analytical Biochemistry, 346, 289–294.PubMedGoogle Scholar
  28. 28.
    Walker, W., Porteous, D., & Boyd, A. (2004). The effects of plasmid copy number and sequence context upon transfection efficiency. Journal of Controlled Release, 94, 245–252.PubMedCrossRefGoogle Scholar
  29. 29.
    Carpentier, E., Paris, S., Kamen, A., & Durocher, Y. (2007). Limiting factors governing protein expression following polyethylenimine-mediated gene transfer in HEK293-EBNA1 cells. Journal of Biotechnology, 128, 268–280.PubMedCrossRefGoogle Scholar
  30. 30.
    Lechardeur, D., Verkman, A., & Lukacs, G. (2005). Intracellular routing of plasmid DNA during non-viral gene transfer. Advanced Drug Delivery Reviews, 57, 755–767.PubMedCrossRefGoogle Scholar
  31. 31.
    Glasspool-Malone, J., Steenland, P., McDonald, R., Sanchez, R., Watts, T., Zabner, J., & Malone, R. (2002). DNA transfection of macaque and murine respiratory tissue is greatly enhanced by use of a nuclease inhibitor. Journal of Gene Medicine, 4, 323–322.PubMedCrossRefGoogle Scholar
  32. 32.
    Azzoni, A., Ribeiro, S., Monteiro, G., & Prazeres, D. (2007). The impact of polyadenylation signals on plasmid nuclease-resistance and transgene expression. Journal of Gene Medicine, 9, 392–402.PubMedCrossRefGoogle Scholar
  33. 33.
    Ribeiro, S., Monteiro, G., & Prazeres, D. (2004). The role of polyadenylation signal secondary structures on the resistance of plasmid vectors to nucleases. Journal of Gene Medicine, 6, 565–573.PubMedCrossRefGoogle Scholar
  34. 34.
    Ledwith, B., Manam, S., Troilo, P., Barnum, A., Pauley, C., Griffiths, T., Harper, L., Beare, C., Bagdon, W., & Nichols, W. (2000). Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology, 43, 258–272.PubMedCrossRefGoogle Scholar
  35. 35.
    Nichols, W., Ledwith, B., Manam, S., & Troilo, P. (1995). Potential DNA vaccine integration into host cell genome. Annals of the New York Academy of Sciences, 772, 30–39.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang, Z., Troilo, P., Wang, X., Griffiths, T., Pacchione, S., Barnum, A., Harper, L., Pauley, C., Niu, Z., Denisova, L., et al. (2004). Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Therapy, 11, 711–721.PubMedCrossRefGoogle Scholar
  37. 37.
    Manam, S., Ledwith, B., Barnum, A., Troilo, P., Pauley, C., Harper, L., Griffiths, T., Niu, Z., Denisova, L., Follmer, T., et al. (2000). Plasmid DNA vaccines: tissue distribution and effects of DNA sequence, adjuvants and delivery method on integration into host DNA. Intervirology, 43, 273–281.PubMedCrossRefGoogle Scholar
  38. 38.
    Ertl, P., & Thomsen, L. (2003). Technical issues in construction of nucleic acid vaccines. Methods, 31, 199–206.PubMedCrossRefGoogle Scholar
  39. 39.
    Yew, N., Wang, K., Przybylska, M., Bagley, R., Stedman, M., Marshall, J., Scheule, R., & Cheng, S. (1999). Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid:pDNA complexes. Human Gene Therapy, 10, 223–234.PubMedCrossRefGoogle Scholar
  40. 40.
    McMahon, J., Wells, K., Bamfo, J., Cartwright, M., & Wells, D. (1998). Inflammatory responses following direct injection of plasmid DNA into skeletal muscle. Gene Therapy, 5, 1283–1290.PubMedCrossRefGoogle Scholar
  41. 41.
    Hartmann, G., & Krieg, A. (1999). CpG DNA and LPS induce distinct patterns of activation in human monocytes. Gene Therapy, 6, 893–903.PubMedCrossRefGoogle Scholar
  42. 42.
    Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., et al. (2000). A Toll-like receptor recognizes bacterial DNA. Nature, 408, 740–745.PubMedCrossRefGoogle Scholar
  43. 43.
    Rozkov, A., Avignone-Rossa, C., Ertl, P., Jones, P., O’Kennedy, R., Smith, J., Dale, J., & Bushell, M. (2004). Characterization of the metabolic burden on Escherichia coli DH1 cells imposed by the presence of a plasmid containing a gene therapy sequence. Biotechnology and Bioengineering, 88, 909–915.PubMedCrossRefGoogle Scholar
  44. 44.
    Rossi, S., (Ed.). (2004). Australian medicines handbook. Adelaide.Google Scholar
  45. 45.
    Moyed, H., & Bertrand, K. (1983). Mutations in multicopy Tn10 tet plasmids that confer resistance to inhibitory effects of inducers of tet gene expression. Journal of Bacteriology, 155, 557–564.PubMedGoogle Scholar
  46. 46.
    Valenzuela, M., Ikpeazu, E., & Siddiqui, K. (1996). E. coli growth inhibition by a high copy number derivative of plasmid pBR322. Biochemical and Biophysical Research Communications, 219, 876–883.PubMedCrossRefGoogle Scholar
  47. 47.
    Chiang, C., & Bremer, H. (1988). Stability of pBR322-derived plasmids. Plasmid, 20, 207–220.PubMedCrossRefGoogle Scholar
  48. 48.
    FDA. (1996). Points to consider on plasmid DNA vaccines for preventive infectious disease indications. Center for Biologics Evaluation and Research, Docket No. 96N-0400.Google Scholar
  49. 49.
    Yew, N., Zhao, H., Wu, I., Song, A., Tousignant, J., Przybylska, M., & Cheng, S. (2000). Reduced inflammatory response to plasmid DNA vectors by elimination and inhibition of immunostimulatory CpG motifs. Molecular Therapy, 1, 255–262.PubMedCrossRefGoogle Scholar
  50. 50.
    Valera, A., Perales, J., Hatzoglou, M., & Bosch, F. (1994). Expression of the neomycin-resistance (neo) gene induces alterations in gene expression and metabolism. Human Gene Therapy, 5, 449–456.PubMedCrossRefGoogle Scholar
  51. 51.
    Hägg, P., de Pohl, J., Abdulkarim, F., & Isaksson, L. (2004). A host/plasmid system that is not dependent on antibiotics and antibiotic resistance genes for stable plasmid maintenance in Escherichia coli. Journal of Biotechnology, 111, 17–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Soubrier, F., Cameron, B., Manse, B., Somarriba, S., Dubertret, C., Jaslin, G., Jung, G., Caer, C., Dang, D., Mouvault, J., et al. (1999). pCOR: a new design of plasmid vectors for nonviral gene therapy. Gene Therapy, 6, 1482–1488.PubMedCrossRefGoogle Scholar
  53. 53.
    Cranenburgh, R., Hanak, J., Williams, S., & Sherratt, D. (2001). Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration. Nucleic Acids Research, 29, E26.PubMedCrossRefGoogle Scholar
  54. 54.
    Mairhofer, J., Pfaffenzeller, I., Merz, D., & Grabherr, R. (2008). A novel antibiotic free plasmid selection system: Advances in safe and efficient DNA therapy. Biotechnology Journal, 3, 83–89.PubMedCrossRefGoogle Scholar
  55. 55.
    Soubrier, F., Laborderie, B., & Cameron, B. (2005). Improvement of pCOR plasmid copy number for pharmaceutical applications. Applied Microbiology and Biotechnology, 66, 683–688.PubMedCrossRefGoogle Scholar
  56. 56.
    Montgomery, D., Shiver, J., Leander, K., Perry, H., Friedman, A., Martinez, D., Ulmer, J., Donnelly, J., & Liu, M. (1993). Heterologous and homologous protection against influenza A by DNA vaccination: optimization of DNA vectors. DNA and Cell Biology, 12, 777–783.PubMedGoogle Scholar
  57. 57.
    Chen, Z., He, C., & Kay, M. (2005). Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo. Human Gene Therapy, 16, 126–131.PubMedCrossRefGoogle Scholar
  58. 58.
    Darquet, A., Cameron, B., Wils, P., Scherman, D., & Crouzet, J. (1997). A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Therapy, 4, 1341–1349.PubMedCrossRefGoogle Scholar
  59. 59.
    Darquet, A., Rangara, R., Kreiss, P., Schwartz, B., Naimi, S., Delaère, P., Crouzet, J., & Scherman, D. (1999). Minicircle: an improved DNA molecule for in vitro and in vivo gene transfer. Gene Therapy, 6, 209–218.PubMedCrossRefGoogle Scholar
  60. 60.
    Chen, Z., He, C., Ehrhardt, A., & Kay, M. (2003). Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Molecular Therapy, 8, 495–500.PubMedCrossRefGoogle Scholar
  61. 61.
    Tomizawa, J. (1990). Control of ColE1 plasmid replication. Intermediates in the binding of RNA I and RNA II. Journal of Molecular Biology, 212, 683–694.PubMedCrossRefGoogle Scholar
  62. 62.
    Eguchi, Y., Itoh, T., & Tomizawa, J. (1991). Antisense RNA. Annual Review of Biochemistry, 60, 631–652.PubMedCrossRefGoogle Scholar
  63. 63.
    Pfaffenzeller, I., Mairhofer, J., Striedner, G., Bayer, K., & Grabherr, R. (2006). Using ColE1-derived RNA I for suppression of a bacterially encoded gene: implication for a novel plasmid addiction system. Biotechnology Journal, 1, 675–681.PubMedCrossRefGoogle Scholar
  64. 64.
    Brown, E., Vivas, E., Walsh, C., & Kolter, R. (1995). MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. Journal of Bacteriology, 177, 4194–4197.PubMedGoogle Scholar
  65. 65.
    Kushner, P., Baxter, J., Duncan, K., Lopez, G., Schaufele, F., Uht, R., Webb, P., & West, B. (1994). Eukaryotic regulatory elements lurking in plasmid DNA: the activator protein-1 site in pUC. Molecular Endocrinology, 8, 405–407.PubMedCrossRefGoogle Scholar
  66. 66.
    Ghersa, P., Whelan, J., Pescini, R., DeLamarter, J., & Hooft van Huijsduijnen, R. (1994). Commonly used cat reporter vectors contain a cAMP-inducible, cryptic enhancer that co-operates with NF-kappa B-sites. Gene, 151, 331–332.PubMedCrossRefGoogle Scholar
  67. 67.
    Tully, D., & Cidlowski, J. (1987). pBR322 contains glucocorticoid regulatory element DNA consensus sequences. Biochemical and Biophysical Research Communications, 144, 1–10.PubMedCrossRefGoogle Scholar
  68. 68.
    Peterson, D., Beifuss, K., & Morley, K. (1987). Context-dependent gene expression: cis-acting negative effects of specific procaryotic plasmid sequences on eucaryotic genes. Molecular and Cell Biology, 7, 1563–1567.Google Scholar
  69. 69.
    Leite, J., Cousin, C., Heysen, A., & D’Halluin, J. (1989). Negative effect of a cis-acting pBR322 element on adenovirus E1a gene expression. Gene, 82, 351–356.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Department of BiotechnologyUniversity of Natural Resources and Applied Life SciencesViennaAustria

Personalised recommendations