Molecular Biotechnology

, Volume 39, Issue 3, pp 239–264 | Cite as

Reviews in Molecular Biology and Biotechnology: Transmembrane Signaling by G Protein-Coupled Receptors

Reviews

Abstract

As the most diverse type of cell surface receptor, the importance heptahelical G protein-coupled receptors (GPCRs) to clinical medicine cannot be overestimated. Visual, olfactory and gustatory sensation, intermediary metabolism, cell growth and differentiation are all influenced by GPCR signals. The basic receptor-G protein-effector mechanism of GPCR signaling is tuned by a complex interplay of positive and negative regulatory events that amplify the effect of a hormone binding the receptor or that dampen cellular responsiveness. The association of heptahelical receptors with a variety of intracellular partners other than G proteins has led to the discovery of potential mechanisms of GPCR signaling that extend beyond the classical paradigms. While the physiologic relevance of many of these novel mechanisms of GPCR signaling remains to be established, their existence suggests that the mechanisms of GPCR signaling are even more diverse than previously imagined.

Keywords

G protein-coupled receptors Heterotrimeric GTP-binding proteins Signal transduction Second messenger systems G protein-coupled receptor kinases Arrestins 

References

  1. 1.
    Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.CrossRefGoogle Scholar
  2. 2.
    Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., & Holt, R. A., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.CrossRefGoogle Scholar
  3. 3.
    Bargmann, C. (1998). Neurobiology of the Caenorhabditis elegans genome. Science, 282, 2028–2033.CrossRefGoogle Scholar
  4. 4.
    Flower, D. R. (1999). Modelling G-protein-coupled receptors for drug design. Biochimica Et Biophysica Acta, 1422, 207–234.Google Scholar
  5. 5.
    Fredriksson, R., Lagerstrom, M. C., Lundin, L. G., & Schioth, H. B. (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology, 63, 1256–1272.CrossRefGoogle Scholar
  6. 6.
    Birnbaumer, L., Pohl, S. L., Michiel, H., Krans, M. J., & Rodbell, M. (1970). The actions of hormones on the adenyl cyclase system. Advances in Biochemical Psychopharmacology, 3, 185–208.Google Scholar
  7. 7.
    Insel, P. A., Maguire, M. E., Gilman, A. G., Bourne, H. R., Coffino, P., & Melmon, K. L. (1976). Beta adrenergic receptors and adenylate cyclase: Products of separate genes? Molecular Pharmacology, 12, 1062–1069.Google Scholar
  8. 8.
    Gilman, A. G. (1987). G proteins: Transducers of receptor-generated signals. Annual Review of Biochemistry, 56, 615–649.CrossRefGoogle Scholar
  9. 9.
    Sternweis, P. C., & Gilman, A. G. (1979). Reconstitution of catecholamine-sensitive adenylate cyclase. Reconstitution of the uncoupled variant of the S40 lymphoma cell. Journal of Biological Chemistry, 254, 3333–3340.Google Scholar
  10. 10.
    Northup, J. K., Sternweis, P. C., Smigel, M. D., Schleifer, L. S., Ross, E. M., & Gilman, A. G. (1980). Purification of the regulatory component of adenylate cyclase. Proceedings of the National Academy of Sciences of the United States of America, 77, 6516–6520.CrossRefGoogle Scholar
  11. 11.
    Manning, D. R., & Gilman, A. G. (1983). The regulatory components of adenylate cyclase and transducin. A family of structurally homologous guanine nucleotide-binding proteins. Journal of Biological Chemistry, 258, 7059–7063.Google Scholar
  12. 12.
    Lefkowitz, R. J. (2000). The superfamily of heptahelical receptors. Nature Cell Biology, 2, E133–E136.CrossRefGoogle Scholar
  13. 13.
    Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., & Miyano, M. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 289, 739–745.CrossRefGoogle Scholar
  14. 14.
    Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G. F., Thian, F. S., Kobilka, T. S., Choi, H.-J., Kuhn, P., Weis, W. I., Kobilka, B. K., & Stevens, R. C. (2007). High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science, 318, 1258–1265.CrossRefGoogle Scholar
  15. 15.
    Rosenbaum, D. M., Cherezov, V., Hanson, M. A., Rasmussen, S. G. F., Thian, F. S., Kobilka, T. S., Choi, H.-J., Yao, X.-J., Weis, W. I., Stevens, R. C., & Kobilka, B. K. (2007). GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science, 318, 1266–1273.CrossRefGoogle Scholar
  16. 16.
    Rasmussen, S. G. F., Choi, H.-J., Rosenbaum, D. M., Kobilka, T. S., Thian, F. S., Edwards, P. C., Burghammer, M., Ratnala, V. R. P., Sanishvili, R., Fischetti, R. F., Schertler, G. F. X., Weis, W. I., & Kobilka, B. K. (2007). Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature, 450, 383–387.CrossRefGoogle Scholar
  17. 17.
    Kolakowski, L. F., Jr. (1994). GCRDb: A G-protein coupled receptor database. Receptors & Channels, 2, 1–7.Google Scholar
  18. 18.
    Perez, D. M. (2003). The evolutionarily triumphant G protein-coupled receptor. Molecular Pharmacology, 63, 1202–1205.CrossRefGoogle Scholar
  19. 19.
    Arshavsky, V. Y., Lamb, T. D., & Pugh, E. N., Jr. (2002). G proteins and phototransduction. Annual Review of Biochemistry, 64, 153–187.Google Scholar
  20. 20.
    Ridge, K. D., Abdulaev, N. G., Sousa, M., & Palczewski, K. (2003). Phototransduction: Crystal clear. Trends in Biochemical Sciences, 28, 479–487.CrossRefGoogle Scholar
  21. 21.
    Gether, U., & Kobilka, B. K. (1998). G protein-coupled receptors. II. Mechanism of agonist activation. Journal of Biological Chemistry, 273, 17979–17982.CrossRefGoogle Scholar
  22. 22.
    De Lean, A., Stadel, J. M., & Lefkowitz, R. J. (1980). A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. Journal of Biological Chemistry, 255, 7108–7117.Google Scholar
  23. 23.
    Samama, P., Cotecchia, S., Costa, T., & Lefkowitz, R. J. (1993). A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. Journal of Biological Chemistry, 268, 4625–4536.Google Scholar
  24. 24.
    Lefkowitz, R. J., Cotecchia, S., Samama, P., & Costa, T. (1993). Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends in Pharmacological Sciences, 14, 303–307.CrossRefGoogle Scholar
  25. 25.
    Maudsley, S., Martin, B., & Luttrell, L. M. (2005). Perspectives in Pharmacology: The origins of diversity and specificity in G protein-coupled receptor signaling. Journal of Pharmacology and Experimental Therapeutics, 314, 485–494.CrossRefGoogle Scholar
  26. 26.
    Perez, D. M., Hwa, J., Gaivin, R., Mathur, M., Brown, F., & Graham, R. M. (1996). Constitutive activation of a single effector pathway: Evidence for multiple activation states of a G protein-coupled receptor. Molecular Pharmacology, 49, 112–122.Google Scholar
  27. 27.
    Barroso, S., Richard, F., Nicolas-Etheve, D., Kitabgi, P., & Labbe-Jullie, C. (2002). Constitutive activation of the neurotensin receptor 1 by mutation of Phe(358) in Helix seven. British Journal of Pharmacology, 135, 997–1002.CrossRefGoogle Scholar
  28. 28.
    Kenakin, T. (2002). Drug efficacy at G protein-coupled receptors. Annual Review of Pharmacology and Toxicology, 42, 349–379.CrossRefGoogle Scholar
  29. 29.
    Kenakin, T. (2003). Ligand-selective receptor conformations revisited: The promise and the problem. Trends in Pharmacological Sciences, 24, 346–354.CrossRefGoogle Scholar
  30. 30.
    Seifert, R., Gether, U., Wenzel-Seifert, K., & Kobilka, B. K. (1999). Effects of guanine, inosine, and xanthine nucleotides on β(2)-adrenergic receptor/G(s) interactions: Evidence for multiple receptor conformations. Molecular Pharmacology, 56, 348–358.Google Scholar
  31. 31.
    Gurevich, V. V., Pals-Rylaarsdam, R., Benovic, J. L., Hosey, M. M., & Onorato, J. J. (1997). Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity. Journal of Biological Chemistry, 272, 28849–28852.CrossRefGoogle Scholar
  32. 32.
    Key, T. A., Bennett, T. A., Foutz, T. D., Gurevich, V. V., Sklar, L. A., & Prossnitz, E. R. (2001). Regulation of formyl peptide receptor agonist affinity by reconstitution with arrestins and heterotrimeric G proteins. Journal of Biological Chemistry, 276, 49204–49212.CrossRefGoogle Scholar
  33. 33.
    Swaminath, G., Xiang, Y., Lee, T. W., Steenhuis, J., Parnot, C., & Kobilka, B. K. (2004). Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states. Journal of Biological Chemistry, 279, 686–691.CrossRefGoogle Scholar
  34. 34.
    Whistler, J. L., & von Zastrow, M. (1998). Morphine-activated opioid receptors elude desensitization by beta-arrestin. Proceedings of the National Academy of Sciences of the United States of America, 95, 9914–9919.CrossRefGoogle Scholar
  35. 35.
    Kohout, T. A., Nicholas, S. L., Perry, S. J., Reinhart, G., Junger, S., & Struthers, R. S. (2004). Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. Journal of Biological Chemistry, 279, 23214–23222.CrossRefGoogle Scholar
  36. 36.
    Holloway, A. C., Qian, H., Pipolo, L., Ziogas, J., Miura, S., Karnik, S., Southwell, B. R., Lew, M. J., & Thomas, W. G. (2002). Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1a angiotensin receptors. Molecular Pharmacology, 61, 768–777.CrossRefGoogle Scholar
  37. 37.
    Bisello, A., Chorev, M., Rosenblatt, M., Monticelli, L., Mierke, D. F., & Ferrari, S. L. (2002). Selective ligand-induced stabilization of active and desensitized parathyroid hormone type 1 receptor conformations. Journal of Biological Chemistry, 277, 38524–38530.CrossRefGoogle Scholar
  38. 38.
    Wei, H., Ahn, S., Shenoy, S. K., Karnik, S. S., Hunyady, L., Luttrell, L. M., & Lefkowitz, R. J. (2003). Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proceedings of the National Academy of Sciences of the United States of America, 100, 10782–10787.CrossRefGoogle Scholar
  39. 39.
    Gesty-Palmer, D., Chen, M., Oakley, R., Reiter, E., Ahn, S., Nelson, C. D., Spurney, R. F., Luttrell, L. M., & Lefkowitz, R. J. (2006). Distinct conformations of the parathyroid hormone receptor mediate G protein and beta-arrestin dependent activation of ERK1/2. Journal of Biological Chemistry, 281, 10856–10864.CrossRefGoogle Scholar
  40. 40.
    Kenakin, T. (2007). Functional selectivity through protean and biased agonism: Who steers the ship? Molecular Pharmacology, 72, 1393–1401.CrossRefGoogle Scholar
  41. 41.
    Downes, G. B., & Gautam, N. (1999). The G protein subunit gene families. Genomics, 62, 544–552.CrossRefGoogle Scholar
  42. 42.
    Kurose H. (2003). Galpha12 and Galpha13 as key regulatory mediator in signal transduction. Life Sciences, 74, 155–161.CrossRefGoogle Scholar
  43. 43.
    Schmidt, C. J., Thomas, T. C., Levine, M. A., & Neer, N. J. (1992). Specificity of G protein beta and gamma subunit interactions. Journal of Biological Chemistry, 267, 13807–13810.Google Scholar
  44. 44.
    Hildebrandt, J. D. (1997). Role of subunit diversity in signaling by heterotrimeric G proteins. Biochemical Pharmacology, 54, 325–339.CrossRefGoogle Scholar
  45. 45.
    Ford, C. E., Skiba, N. P., Bae, H., Daaka, Y., Reuveny, E., Shekter, L. R., Rosal, R., Weng, G., Yang, C. S., Iyengar, R., Miller, R. J., Jan, L. Y., Lefkowitz, R. J., & Hamm, H. E. (1998). Molecular basis for interactions of G protein betagamma subunits with effectors. Science, 280, 1271–1274.CrossRefGoogle Scholar
  46. 46.
    Sprang, S. R. (1997). G protein mechanisms: Insights from structural analysis. Annual Review of Pharmacology and Toxicology, 36, 461–480.Google Scholar
  47. 47.
    Coleman, D. E., & Sprang, S. R. (1996). How G proteins work: A continuing story. Trends in Biochemical Sciences, 21, 41–44.Google Scholar
  48. 48.
    Casey, P. J. (1994). Lipid modifications of G proteins. Current Opinion in Cell Biology, 6, 219–225.CrossRefGoogle Scholar
  49. 49.
    Clapham, D. E., & Neer, E. J. (1993). New roles for G-protein beta gamma-dimers in transmembrane signaling. Nature, 365, 403–406.CrossRefGoogle Scholar
  50. 50.
    Zwartkruis, F. J., & Bos, J. L. (1999). Ras and Rap1: Two highly related small GTPases with distinct function. Experimental Cell Research, 253, 157–165.CrossRefGoogle Scholar
  51. 51.
    Sunahara, R. K., Dessauer, C. W., & Gilman, A. G. (1996). Complexity and diversity of mammalian adenylyl cyclases. Annual Review of Pharmacology and Toxicology, 36, 461–480.CrossRefGoogle Scholar
  52. 52.
    Morris, A. J., & Scarlata, S. (1997). Regulation of effectors by G-protein alpha- and beta gamma-subunits. Recent insights from studies of the phospholipase c-beta isoenzymes. Biochemical Pharmacology, 54, 429–435.CrossRefGoogle Scholar
  53. 53.
    Wickman, K. D., & Clapham, D. E. (1995). G-protein regulation of ion channels. Current Opinion in Neurobiology, 5, 278–285.CrossRefGoogle Scholar
  54. 54.
    Albert, P. R., & Robillard, L. (2002). G protein specificity: Traffic direction required. Cellular Signalling, 14, 407–418.CrossRefGoogle Scholar
  55. 55.
    Stoffel, R. H. III, Pitcher, J. A., & Lefkowitz, R. J. (1997). Targeting G protein-coupled receptor kinases to their receptor substrates. Journal of Membrane Biology, 157, 1–8.CrossRefGoogle Scholar
  56. 56.
    Perry, S. J., Baillie, G. S., Kohout, T. A., McPhee, I., Magiera, M. M., Ang, K. L., Miller, W. E., McLean, A. J., Conti, M., Houslay, M. D., & Lefkowitz, R. J. (2002). Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science, 298, 834–836.CrossRefGoogle Scholar
  57. 57.
    Baillie, G. S., Sood, A., McPhee, I., Gall, I., Perry, S. J., Lefkowitz, R. J., & Houslay, M. D. (2003). Beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proceedings of the National Academy of Sciences of the United States of America, 100, 940–945.CrossRefGoogle Scholar
  58. 58.
    Ross, E. M. (1995). G protein GTPase-activating proteins: Regulation of speed, amplitude, and signaling selectivity. Recent Progress in Hormone Research, 50, 207–221.Google Scholar
  59. 59.
    Ross, E. M., & Wilkie, T. M. (2000). GTPase-activating proteins for heterotrimeric G proteins: Regulators of G protein signaling (RGS) and RGS-like proteins. Annual Review of Biochemistry, 69, 795–827.CrossRefGoogle Scholar
  60. 60.
    Berman, D. M., & Gilman, A. G. (1998). Mammalian RGS proteins: Barbarians at the gate. Journal of Biological Chemistry, 273, 1269–1272.CrossRefGoogle Scholar
  61. 61.
    Schulz, R. (2001). The pharmacology of phosducin. Pharmacological Research, 43, 1–10.CrossRefGoogle Scholar
  62. 62.
    Pitcher, J., Lohse, M. J., Codina, J., Caron, M. G., & Lefkowitz, R. J. (1992). Desensitization of the isolated beta 2-adrenergic receptor by beta-adrenergic receptor kinase, cAMP-dependent protein kinase, and protein kinase C occurs via distinct molecular mechanisms. Biochemistry, 31, 3193–3197.CrossRefGoogle Scholar
  63. 63.
    Freedman, N. J., & Lefkowitz, R. J. (1996). Desensitization of G protein-coupled receptors. Recent Progress in Hormone Research, 51, 319–351.Google Scholar
  64. 64.
    Daaka, Y., Luttrell, L. M., & Lefkowitz, R. J. (1997). Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature, 390, 88–91.CrossRefGoogle Scholar
  65. 65.
    Zamah, A. M., Delahunty, M., Luttrell, L. M., & Lefkowitz, R. J. (2002). Protein kinase A-mediated phosphorylation of the beta2-adrenergic receptor regulates its coupling to Gs and Gi. Demonstration in a reconstituted system. Journal of Biological Chemistry, 277, 31249–31256.CrossRefGoogle Scholar
  66. 66.
    Lawler, O. A., Miggin, S. M., & Kinsella, B. T. (2001). Protein kinase A-mediated phosphorylation of serine 357 of the mouse prostacyclin receptor regulates its coupling to Gs-, to Gi- and to Gq-coupled effector signaling. Journal of Biological Chemistry, 276, 33596–33607.CrossRefGoogle Scholar
  67. 67.
    Lefkowitz, R. J., Pierce, K. L., & Luttrell, L. M. (2002). Dancing with different partners: Protein kinase A phosphorylation of seven membrane-spanning receptors regulates their G protein-coupling specificity. Molecular Pharmacology, 62, 971–974.CrossRefGoogle Scholar
  68. 68.
    Lohse, M. J., Andexinger, S., Pitcher, J., Trukawinski, S., Codina, J., Faure, J.-P., Caron, M. G., & Lefkowitz, R. J. (1993). Receptor specific desensitization with purified proteins. Kinase dependence and receptor specificity of β-arrestin and arrestin in the β2-adrenergic receptor and rhodopsin systems. Journal of Biological Chemistry, 267, 8558–8564.Google Scholar
  69. 69.
    Ferguson, S. S. (2001). Evolving concepts in G protein-coupled receptor endocytosis: The role in receptor desensitization and signaling. Pharmacological Reviews, 53, 1–24.Google Scholar
  70. 70.
    Luttrell, L. M., & Lefkowitz, R. J. (2002). The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. Journal of Cell Science, 115, 455–465.Google Scholar
  71. 71.
    Goodman, O. B. Jr., Krupnick, J. G., Santini, F., Gurevich, V. V., Penn, R. B., Gagnon, A. W., Keen, J. H., & Benovic, J. L. (1996). Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature, 383, 447–450.CrossRefGoogle Scholar
  72. 72.
    Laporte, S. A., Oakley, R. H., Zhang, J., Holt, J. A., Ferguson, S. S., Caron, M. G., & Barak, L. S. (1999). The beta2-adrenergic receptor/beta-arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 96, 3712–3717.CrossRefGoogle Scholar
  73. 73.
    Carman, C. V., Parent, J. L., Day, P. W., Pronin, A. N., Sternweis, P. M., Wedegaertner, P. B., Gilman, A. G., Benovic, J. L., & Kozasa, T. (1999). Selective regulation of Galpha(q/11) by an RGS domain in the G protein-coupled receptor kinase, GRK2. Journal of Biological Chemistry, 274, 34483–34492.CrossRefGoogle Scholar
  74. 74.
    Lodowski, D. T., Pitcher, J. A., Capel, W. D., Lefkowitz, R. J., & Tesmer, J. J. (2003). Keeping G proteins at bay: A complex between G protein-coupled receptor kinase 2 and G beta gamma. Science, 300, 1256–1262.CrossRefGoogle Scholar
  75. 75.
    Dhami, G. K., Dale, L. B., Anborgh, P. H., O’Connor-Halligan, K. E., Sterne-Marr, R., & Ferguson, S. S. (2004). G Protein-coupled receptor kinase 2 RGS homology domain binds to both metabotropic glutamate receptor 1a and G alpha q to attenuate signaling. Journal of Biological Chemistry, 279, 16614–16620.CrossRefGoogle Scholar
  76. 76.
    Barak, L. S., Ferguson, S. S., Zhang, J., & Caron, M. G. (1997). A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. Journal of Biological Chemistry, 272, 27497–27500.CrossRefGoogle Scholar
  77. 77.
    Oakley, R. H., Laporte, S. A., Holt, J. A., Barak, L. S., & Caron, M. G. (2001). Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-beta-arrestin complexes after receptor endocytosis. Journal of Biological Chemistry, 276, 19452–19460.CrossRefGoogle Scholar
  78. 78.
    Oakley, R. H., Laporte, S. A., Holt, J. A., Caron, M. G., & Barak, L. S. (2000). Differential affinities of visual arrestin, beta-arrestin1, and beta-arrestin2 for G protein-coupled receptors delineate two major classes of receptors. Journal of Biological Chemistry, 275, 17201–17210.CrossRefGoogle Scholar
  79. 79.
    Kohout, T. A., Lin, F.-T., Perry, S. J., Conner, D. A., & Lefkowitz, R. J. (2001). Beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proceedings of the National Academy of Sciences of the United States of America, 98, 1601–1606.CrossRefGoogle Scholar
  80. 80.
    Lin, F.-T., Krueger, K. M., Kendall, H. E., Daaka, Y., Fredericks, Z. L., Pitcher, J. A., & Lefkowitz, R. J. (1997). Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1. Journal of Biological Chemistry, 272, 31051–31057.CrossRefGoogle Scholar
  81. 81.
    Lin, F.-T., Chen, W., Shenoy, S., Cong, M., Exum, S. T., & Lefkowitz, R. J. (2002). Phosphorylation of beta-arrestin2 regulates it function in internalization of beta(2)-adrenergic receptors. Biochemistry, 41, 10692–10699.CrossRefGoogle Scholar
  82. 82.
    Shenoy, S. K., McDonald, P. H., Kohout, T. A., & Lefkowitz, R. J. (2001). Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science, 294, 1307–1313.CrossRefGoogle Scholar
  83. 83.
    Martin, N. P., Lefkowitz, R. J., & Shenoy, S. K. (2003). Regulation of V2 vasopressin receptor degradation by agonist-promoted ubiquitination. Journal of Biological Chemistry, 278, 45954–45959.CrossRefGoogle Scholar
  84. 84.
    Shenoy, S. K., & Lefkowitz, R. J. (2003). Trafficking pattern of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. Journal of Biological Chemistry, 278, 14498–14506.CrossRefGoogle Scholar
  85. 85.
    Paing, M. M., Stutts, A. B., Kohout, T. A., Lefkowitz, R. J., & Trejo, J. (2002). Beta-arrestins regulate protease-activated receptor-1 desensitization but not internalization or down-regulation. Journal of Biological Chemistry, 277, 1292–1300.CrossRefGoogle Scholar
  86. 86.
    Vines, C. M., Revankar, C. M., Maestas, D. C., LaRush, L. L., Cimino, D. F., Kohout, T. A., Lefkowitz, R. J., & Prossnitz, E. R. (2003). N-formyl peptide receptors internalize but do not recycle in the absence of arrestins. Journal of Biological Chemistry, 278, 41581–41584.CrossRefGoogle Scholar
  87. 87.
    Brasselet, S., Guillen, S., Vincent, J. P., & Mazella, J. (2002). Beta-arrestin is involved in the desensitization but not in the internalization of the somatostatin receptor 2A expressed in CHO cells. FEBS Letters, 10, 124–128.CrossRefGoogle Scholar
  88. 88.
    Zhang, J., Ferguson, S. S., Barak, L. S., Menard, L., & Caron, M. G. (1996). Dynamin and beta-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization. Journal of Biological Chemistry, 271, 18302–18305.CrossRefGoogle Scholar
  89. 89.
    Vogler, O., Nolte, B., Voss, M., Schmidt, M., Jakobs, K. H., & van Koppen, C. J. (1999). Regulation of muscarinic acetylcholine receptor sequestration and function by beta-arrestin. Journal of Biological Chemistry, 274, 12333–12338.CrossRefGoogle Scholar
  90. 90.
    Rapacciuolo, A., Suvarna, S., Barki-Harrington, L., Luttrell, L. M., Cong, M., Lefkowitz, R. J., & Rockman, H. A. (2003). Phosphorylation sites of the beta-1 adrenergic receptor determine the internalization pathway. Journal of Biological Chemistry, 278, 35403–35411.Google Scholar
  91. 91.
    Pitcher, J. A., Payne, E. S., Csortos, C., DePaoli-Roach, A. A., & Lefkowitz, R. J. (1995). The G-protein-coupled receptor phosphatase: A protein phosphatase type 2A with a distinct subcellular distribution and substrate specificity. Proceedings of the National Academy of Sciences of the United States of America, 92, 8343–8347.CrossRefGoogle Scholar
  92. 92.
    Oakley, R. H., Laporte, S. A., Holt, J. A., Barak, L. S., & Caron, M. G. (1999). Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. Journal of Biological Chemistry, 274, 32248–32257.CrossRefGoogle Scholar
  93. 93.
    Dale, L. B., Seachrist, J. L., Babwah, A. V., & Ferguson, S. S. (2004). Regulation of angiotensin II type 1A receptor intracellular retention, degradation, and recycling by Rab5, Rab7, and Rab11 GTPases. Journal of Biological Chemistry, 279, 13110–13118.CrossRefGoogle Scholar
  94. 94.
    Seachrist, J. L., & Ferguson, S. S. (2003). Regulation of G protein-coupled receptor endocytosis and trafficking by Rab GTPases. Life Sciences, 74, 225–235.CrossRefGoogle Scholar
  95. 95.
    Cao, T. T., Deacon, H. W., Reczek, D., Bretscher, A., & von Zastrow, M. (1999). A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta 2-adrenergic receptor. Nature, 401, 286–290.CrossRefGoogle Scholar
  96. 96.
    Whistler, J. L., Enquist, J., Marley, A., Fong, J., Gladher, F., Tsuruda, P., Murray, S. R., & von Zastrow, M. (2002). Modulation of postendocytic sorting of G protein-coupled receptors. Science, 297, 529–531.CrossRefGoogle Scholar
  97. 97.
    Gage, R. M., Kim, K. A., Cao, T. T., & von Zastrow, M. (2001). A transplantable sorting signal that is sufficient to mediate rapid recycling of G protein-coupled receptors. Journal of Biological Chemistry, 276, 44712–44720.CrossRefGoogle Scholar
  98. 98.
    Premont, R. T., Claing, A., Vitale, N., Freeman, J. L., Pitcher, J. A., Patton, W. A., Moss, J., Vaughan, M., & Lefkowitz, R. J. (1998). Beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proceedings of the National Academy of Sciences of the United States of America, 95, 14082–14087.CrossRefGoogle Scholar
  99. 99.
    Claing, A., Chen, W., Miller, W. E., Vitale, N., Moss, J., Premont, R. T., & Lefkowitz, R. J. (2001). Beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. Journal of Biological Chemistry, 276, 42509–42513.CrossRefGoogle Scholar
  100. 100.
    Devi, L. (2001). Heterodimerization of G-protein-coupled receptors: Pharmacology, signaling and trafficking. Trends in Pharmacological Sciences, 22, 532–537.CrossRefGoogle Scholar
  101. 101.
    Milligan, G. (2001). Oligomerisation of G-protein-coupled receptors. Journal of Cell Science, 114, 1265–1271.Google Scholar
  102. 102.
    Angers, S., Salahpour, A., & Bouvier, M. (2002). Dimerization: An emerging concept for G protein-coupled receptor ontogeny and function. Annual Review of Pharmacology and Toxicology, 42, 409–435.CrossRefGoogle Scholar
  103. 103.
    Nakanishi-Matsui, M., Zheng, Y. W., Sulciner, D. J., Weiss, E. J., Ludeman, M. J., & Coughlin, S. R. (2000). PAR3 is a cofactor for PAR4 activation by thrombin. Nature, 404, 609–613.CrossRefGoogle Scholar
  104. 104.
    O’Brien, P. J., Prevost, N., Molino, M., Hollinger, M. K., Woolkalis, M. J., Woulfe, D. S., & Brass, L. F. (2000). Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. Journal of Biological Chemistry, 275, 13502–13509.CrossRefGoogle Scholar
  105. 105.
    Baneres, J. L., & Parello, J. (2003). Structure-based analysis of GPCR function: Evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein. Journal of Molecular Biology, 329, 815–829.CrossRefGoogle Scholar
  106. 106.
    Marshall, G. R. (2001). Peptide interactions with G-protein coupled receptors. Biopolymers, 60, 246–277.CrossRefGoogle Scholar
  107. 107.
    Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D. A., Engel, A., & Palczewski, K. (2003). Atomic-force microscopy: Rhodopsin dimers in native disc membranes. Nature, 421, 127–128.CrossRefGoogle Scholar
  108. 108.
    Jones, K. A., Borowsky, B., Tamm, J. A., Craig, D. A., Durkin, M. M., Dai, M., Yao, W. J., Johnson, M., Gunwaldsen, C., Huang, L. Y., Tang, C., Shen, Q., Salon, J. A., Morse, K., Laz, T., Smith, K. E., Nagarathnam, D., Noble, S. A., Branchek, T. A., & Gerald, C. (1998). GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature, 396, 674–679.CrossRefGoogle Scholar
  109. 109.
    Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Froestl, W., Beck, P., Mosbacher, J., Bischoff, S., Kulik, A., Shigemoto, R., Karschin, A., & Bettler, B. (1998). GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature, 396., 683–687.CrossRefGoogle Scholar
  110. 110.
    Kniazeff, J., Galvez, T., Labesse, G., & Pin, J. P. (2002). No ligand binding in the GB2 subunit of the GABA(B) receptor is required for activation and allosteric interaction between the subunits. Journal of Neuroscience, 22, 7352–7361.Google Scholar
  111. 111.
    Robbins, M. J., Calver, A. R., Filippov, A. K., Hirst, W. D., Russell, R. B., Wood, M. D., Nasir, S., Couve, A., Brown, D. A., Moss, S. J., & Pangalos, M. N. (2001). GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer. Journal of Neuroscience, 21, 8043–8052.Google Scholar
  112. 112.
    Margeta-Mitrovic, M., Jan, Y. N., & Jan, L. Y. (2000). A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron, 27, 97–106.CrossRefGoogle Scholar
  113. 113.
    Ng, G. Y., O’Dowd, B. F., Lee, S. P., Chung, H. T., Brann, M. R., Seeman, P., & George, S. R. (1996). Dopamine D2 receptor dimers and receptor-blocking peptides. Biochemical and Biophysical Research Communications, 227, 200–204.CrossRefGoogle Scholar
  114. 114.
    Schulz, A., Grosse, R., Schultz, G., Gudermann, T., & Schoneberg, T. (2000). Structural implication for receptor oligomerization from functional reconstitution studies of mutant V2 vasopressin receptors. Journal of Biological Chemistry, 275, 2381–2389.CrossRefGoogle Scholar
  115. 115.
    Vila-Coro, A. J., Rodriguez-Frade, J. M., Martin de Ana, A., Moreno-Ortiz, M. C., Martinez, A. C., & Mellado, M. (1999). The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB Journal, 13, 1699–1710.Google Scholar
  116. 116.
    Rodriguez-Frade, J. M., Vila-Coro, A. J., Martin de Ana, A. M., Albar, J. P., Martinez, A. C., & Mellado, M. (1999). The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proceedings of the National Academy of Sciences of the United States of America, 96, 3628–3633.CrossRefGoogle Scholar
  117. 117.
    Vila-Coro, A. J., Mellado, M., Martin de Ana, A., Lucas, P., del Real, G., Martinez, A. C., & Rodriguez-Frade, J. M. (2000). HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proceedings of the National Academy of Sciences of the United States of America, 97, 3388–3393.CrossRefGoogle Scholar
  118. 118.
    Jordan, B. A., & Devi, L. A. (1999). G-protein-coupled receptor heterodimerization modulates receptor function. Nature, 399, 697–700.CrossRefGoogle Scholar
  119. 119.
    George, S. R., Fan, T., Xie, Z., Tse, R., Tam, V., Varghese, G., & O’Dowd, B. F. (2000). Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. Journal of Biological Chemistry, 275, 26128–26135.Google Scholar
  120. 120.
    AbdAlla, S., Lother, H., & Quitterer, U. (2000). AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature, 407, 94–98.CrossRefGoogle Scholar
  121. 121.
    AbdAlla, S., Lother, H., El Massiery, A., & Quitterer, U. (2001). Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nature Medicine, 7, 1003–1009.CrossRefGoogle Scholar
  122. 122.
    Barki-Harrington, L., Luttrell, L. M., & Rockman, H. A. (2003). Dual inhibition of beta-adrenergic and angiotensin II receptors by a single antagonist: A functional role for receptor-receptor interaction in vivo. Circulation, 108, 1611–1618.CrossRefGoogle Scholar
  123. 123.
    Kroeger, K. M., Pfleger, K. D., & Eidne, K. A. (2003). G-protein coupled receptor oligomerization in neuroendocrine pathways. Fronters Neuroendocrinology, 24, 254–278.CrossRefGoogle Scholar
  124. 124.
    Breitwieser, G. E. (2004). G protein-coupled receptor oligomerization: Implications for G protein activation and cell signaling. Circulation Research, 94, 17–27.CrossRefGoogle Scholar
  125. 125.
    Terrillon, S., & Bouvier, M. (2004). Roles of G-protein-coupled receptor dimerization. EMBO Reports, 5, 30–34.CrossRefGoogle Scholar
  126. 126.
    Whistler, J. L., Chuang, H. H., Chu, P., Jan, L. Y., & von Zastrow, M. (1999). Functional dissociation of mu opioid receptor signaling and endocytosis: Implications for the biology of opiate tolerance and addiction. Neuron, 23, 737–746.CrossRefGoogle Scholar
  127. 127.
    Sexton, P. M., Albiston, A., Morfis, M., & Tilakaratne, N. (2001). Receptor activity modifying proteins. Cellular Signalling, 13, 73–83.CrossRefGoogle Scholar
  128. 128.
    Foord S. M., & Marshall, F. H. (1999). RAMPs: Accessory proteins for seven transmembrane domain receptors. Trends in Pharmacological Sciences, 20, 184–187.CrossRefGoogle Scholar
  129. 129.
    Brady, A. E., & Limbird, L. E. (2002). G protein-coupled receptor interacting proteins: Emerging roles in localization and signal transduction. Cellular Signalling, 14, 297–309.CrossRefGoogle Scholar
  130. 130.
    Bockaert, J., Marin, P., Dumuis, A., & Fagni, L. (2003). The ‘magic tail’ of G protein-coupled receptors: An anchorage for functional protein networks. FEBS Letters, 546, 65–72.CrossRefGoogle Scholar
  131. 131.
    Hall, R. A., Premont, R. T., Chow, C. W., Blitzer, J. T., Pitcher, J. A., Claing, A., Stoffel, R. H., Barak, L. S., Shenolikar, S., Weinman, E. J., Grinstein, S., & Lefkowitz, R. J. (1998). The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature, 392, 626–630.CrossRefGoogle Scholar
  132. 132.
    Mahon, M. J., Donowitz, M., Yun, C. C., & Segre, G. V. (2002). Na(+)/H(+) exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signaling. Nature, 417, 858–861.CrossRefGoogle Scholar
  133. 133.
    Mahon, M. J., & Segre, G. V. (2004). Stimulation by PTH of a NHERF-1 assembled complex consisting of the parathyroid hormone I receptor, PLC-beta and actin increases intracellular calcium in OK cells. Journal of Biological Chemistry, 279, 23550–23558.Google Scholar
  134. 134.
    Hu, L. A., Tang, Y., Miller, W. E., Cong, M., Lau, A. G., Lefkowitz, R. J., & Hall, R. A. (2000). Beta 1-Adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of beta 1-adrenergic receptor interaction with N-methyl-d-aspartate receptors. Journal of Biological Chemistry, 275, 38659–38666.CrossRefGoogle Scholar
  135. 135.
    Xu, J., Paquet, M., Lau, A. G., Wood, J. D., Ross, C. A., & Hall, R. A. (2001). Beta 1-Adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95. Journal of Biological Chemistry, 276., 41310–41317.CrossRefGoogle Scholar
  136. 136.
    Zitzer, H., Honck, H. H., Bachner, D., Richter, D., & Kreienkamp, H. J. (1999). Somatostatin receptor interacting protein defines a novel family of multidomain proteins present in human and rodent brain. Journal of Biological Chemistry, 274, 32997–33001.CrossRefGoogle Scholar
  137. 137.
    Boudin, H., Doan, A., Xia, J., Shigemoto, R., Huganir, R. L., Worley, P., & Craig, A. M. (2000). Presynaptic clustering of mGluR7a requires the PICK1 PDZ domain binding site. Neuron, 28, 485–497.CrossRefGoogle Scholar
  138. 138.
    Perroy, J., Prezeau, L., De Waard, M., Shigemoto, R., Bockaert, J., & Fagni, L. (2000). Selective blockade of P/Q-type calcium channels by the metabotropic glutamate receptor type 7 involves a phospholipase C pathway in neurons. Journal of Neuroscience, 20, 7896–7904.Google Scholar
  139. 139.
    Becamel, C., Figge, A., Poliak, S., Dumuis, A., Peles, E., Bockaert, J., Lubbert, H., & Ullmer, C. (2001). Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1. Journal of Biological Chemistry, 276, 12974–12982.CrossRefGoogle Scholar
  140. 140.
    Smith, F. D., Oxford, G. S., & Milgram, S. L. (1999). Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. Journal of Biological Chemistry, 274, 19894–19900.CrossRefGoogle Scholar
  141. 141.
    Richman, J. G., Brady, A. E., Wang, Q., Hensel, J. L., Colbran, R. J., & Limbird, L. E. (2001). Agonist-regulated Interaction between alpha2-adrenergic receptors and spinophilin. Journal of Biological Chemistry, 276, 15003–15008.CrossRefGoogle Scholar
  142. 142.
    Fagni, L., Worley, P. F., & Ango, F. (2002). Homer as both a scaffold and transduction molecule. Sciences STKE, 2002(137), RE8.Google Scholar
  143. 143.
    Ciruela, F., Soloviev, M. M., & McIlhinney, R. A. (1999). Co-expression of metabotropic glutamate receptor type 1alpha with homer-1a/Vesl-1S increases the cell surface expression of the receptor. Biochemical Journal, 341, 795–803.CrossRefGoogle Scholar
  144. 144.
    Bermak, J. C., Li, M., Bullock, C., & Zhou, Q. Y. (2001). Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nature Cell Biology, 3, 492–498.CrossRefGoogle Scholar
  145. 145.
    Tai, A. W., Chuang, J. Z., Bode, C., Wolfrum, U., & Sung, C. H. (1999). Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell, 97, 877–887.CrossRefGoogle Scholar
  146. 146.
    Sung, C. H., Makino, C., Baylor, D., & Nathans, J. (1994). A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. Journal of Neuroscience, 14, 5818–5833.Google Scholar
  147. 147.
    Shih, M., Lin, F., Scott, J. D., Wang, H. Y., & Malbon, C. C. (1999). Dynamic complexes of beta2-adrenergic receptors with protein kinases and phosphatases and the role of gravin. Journal of Biological Chemistry, 274, 1588–1595.CrossRefGoogle Scholar
  148. 148.
    Fraser, I. D., Cong, M., Kim, J., Rollins, E. N., Daaka, Y., Lefkowitz, R. J., & Scott, J. D. (2000). Assembly of an A kinase-anchoring protein-beta(2)-adrenergic receptor complex facilitates receptor phosphorylation and signaling. Current Biology, 10, 409–412.CrossRefGoogle Scholar
  149. 149.
    Cong, M., Perry, S. J., Lin, F. T., Fraser, I. D., Hu, L. A., Chen, W., Pitcher, J. A., Scott, J. D., & Lefkowitz, R. J. (2001). Regulation of membrane targeting of the G protein-coupled receptor kinase 2 by protein kinase A and its anchoring protein AKAP79. Journal of Biological Chemistry, 276, 15192–15199.CrossRefGoogle Scholar
  150. 150.
    Lopez-Ilasaca, M., Liu, X., Tamura, K., & Dzau, V. J. (2003). The angiotensin II type I receptor-associated protein, ATRAP, is a transmembrane protein and a modulator of angiotensin II signaling. Molecular Biology of the Cell, 14, 5038–5050.CrossRefGoogle Scholar
  151. 151.
    O’Connor, V., El Far, O., Bofill-Cardona, E., Nanoff, C., Freissmuth, M., Karschin, A., Airas, J. M., Betz, H., & Boehm, S. (1999). Calmodulin dependence of presynaptic metabotropic glutamate receptor signaling. Science, 286, 1180–1184.CrossRefGoogle Scholar
  152. 152.
    Li, M., Bermak, J. C., Wang, Z. W., & Zhou, Q. Y. (2000). Modulation of dopamine D(2) receptor signaling by actin-binding protein (ABP-280). Molecular Pharmacology, 57, 446–452.Google Scholar
  153. 153.
    Hasegawa, H., Katoh, H., Fujita, H., Mori, K., & Negishi, M. (2000). Receptor isoform-specific interaction of prostaglandin EP3 receptor with muskelin. Biochemical and Biophysical Research Communications, 276, 350–354.CrossRefGoogle Scholar
  154. 154.
    Prezeau, L., Richman, J. G., Edwards, S. W., & Limbird, L. E. (1999). The zeta isoform of 14-3-3 proteins interacts with the third intracellular loop of different alpha2-adrenergic receptor subtypes. Journal of Biological Chemistry, 274, 13462–13469.CrossRefGoogle Scholar
  155. 155.
    Couve, A., Kittler, J. T., Uren, J. M., Calver, A. R., Pangalos, M. N., Walsh, F. S., & Moss, S. J. (2001). Association of GABA(B) receptors and members of the 14-3-3 family of signaling proteins. Molecular and Cellular Neuroscience, 17, 317–328.CrossRefGoogle Scholar
  156. 156.
    Kryiakis, J. M., & Avruch, J. (1996). Sounding the alarm: Protein kinase cascades activated by stress and inflammation. Journal of Biological Chemistry, 271, 24313–24316.CrossRefGoogle Scholar
  157. 157.
    Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.-E., Karandikar, M., Berman, K., & Cobb, M. H. (2001). Mitogen-activated protein (MAP) kinase pathways: Regulation and physiologic functions. Endocrine Reviews, 22, 153–183.CrossRefGoogle Scholar
  158. 158.
    van Biesen, T., Hawes, B. E., Luttrell, D. K., Krueger, K. M., Touhara, K., Porfiri, E., Sakaue, M., Luttrell, L. M., & Lefkowitz, R. J. (1995). Receptor-tyrosine-kinase- and Gβγ-mediated MAP kinase activation by a common signaling pathway. Nature, 376, 781–784.CrossRefGoogle Scholar
  159. 159.
    Luttrell, L. M., Hawes, B. E., van Biesen, T., Luttrell, D. K., Lansing, T. J. & Lefkowitz, R. J. (1996). Role of c-Src in G protein-coupled receptor-, Gβγ subunit-mediated activation of mitogen activated protein kinases. Journal of Biological Chemistry, 271, 19443–19450.Google Scholar
  160. 160.
    Hackel, P. O., Zwick, E., Prenzel, N., & Ullrich, A. (1999). Epidermal growth factor receptors: Critical mediators of multiple receptor pathways. Current Opinion in Cell Biology, 11, 184–189.CrossRefGoogle Scholar
  161. 161.
    Shah, B. H., & Catt, K. J. (2004). GPCR-mediated transactivation of RTKs in the CNS: Mechanisms and consequences. Trends in Neurosciences, 27, 48–53.CrossRefGoogle Scholar
  162. 162.
    Prenzel, N., Zwick, E., Daub, H., Leserer, M., Abraham, R., Wallasch, C., & Ullrich, A. (1999). EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature, 402, 884–888.Google Scholar
  163. 163.
    Schafer, B., Gschwind, A., & Ullrich, A. (2004). Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene, 23, 991–999.CrossRefGoogle Scholar
  164. 164.
    Yart, A., Roche, S., Wetzker, R., Laffargue, M., Tonks, N., Mayeux, P., Chap, H., & Raynal, P. (2002). A function for phosphoinositide 3-kinase beta lipid products in coupling beta gamma to Ras activation in response to lysophosphatidic acid. Journal of Biological Chemistry, 277, 21167–21178.CrossRefGoogle Scholar
  165. 165.
    Luttrell, L. M., Della Rocca, G. J., van Biesen, T., Luttrell, D. K., & Lefkowitz, R. J. (1997). Gβγ subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. Journal of Biological Chemistry, 272, 4637–4644.CrossRefGoogle Scholar
  166. 166.
    Pierce, K. L., Tohgo, A., Ahn, S., Field, M. E., Luttrell, L. M., & Lefkowitz, R. J. (2001). Epidermal growth factor receptor dependent ERK activation by G protein-coupled receptors: A co-culture system for identifying intermediates upstream and downstream of HB-EGF shedding. Journal of Biological Chemistry, 276, 23155–23165.CrossRefGoogle Scholar
  167. 167.
    Sahin, U., Weskamp, G., Kelly, K., Zhou, H.-M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P., & Blobel, C. (2004). Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. Journal of Cell Biology, 164, 769–779.CrossRefGoogle Scholar
  168. 168.
    Asakura, M., Kitakaze, M., Takashima, S., Liao, Y., Ishikura, F., Yoshinaka, T., Ohmoto, H., Node, K., Yoshino, K., Ishiguro, H., Asanuma, H., Sanada, S., Matsumura, Y., Takeda, H., Beppu, S., Tada, M., Hori, M., & Higashiyama, S. (2002). Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: Metalloproteinase inhibitors as a new therapy. Nature Medicine, 8, 35–40.CrossRefGoogle Scholar
  169. 169.
    Maudsley, S., Pierce, K. L., Zamah, A. M., Miller, W. E., Ahn, S. E., Daaka, Y., Lefkowitz, R. J., & Luttrell, L. M. (2000). The β2-adrenergic receptor mediates MAP kinase activation via assembly of a multireceptor complex including the EGF receptor. Journal of Biological Chemistry, 275, 9572–9580.CrossRefGoogle Scholar
  170. 170.
    Gschwind, A., Zwick, E., Prenzel, N., Leserer, M., & Ullrich, A. (2001). Cell communication networks: Epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene, 20, 1594–1600.CrossRefGoogle Scholar
  171. 171.
    Murasawa, S., Mori, Y., Nozawa, Y., Gotoh, N., Shibuya, M., Masaki, H., Maruyama, K., Tsutsumi, Y., Moriguchi, Y., Shibazaki, Y., Tanaka, Y., Iwasaka, T., Inada, M., & Matsubara, H. (1998). Angiotensin II type 1 receptor-induced extracellular signal-regulated protein kinase activation is mediated by Ca2+/calmodulin-dependent transactivation of epidermal growth factor receptor. Circulation Research, 82, 1338–48.Google Scholar
  172. 172.
    Castagliuolo, I., Valenick, L., Liu, J., & Pothoulakis, C. (2000). Epidermal growth factor receptor transactivation mediates substance P-induced mitogenic responses in U-373 MG cells. Journal of Biological Chemistry, 275, 26545–26550.CrossRefGoogle Scholar
  173. 173.
    Lev, S., Moreno, H., Martinez, R., Canoll, P., Peles, E., Musacchio, J. M., Plowman, G. D., Rudy, B., & Schlessinger, J. (1995). Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature, 376, 737–745.CrossRefGoogle Scholar
  174. 174.
    Dikic, I., Tokiwa, G., Lev, S., Courtneidge, S. A., & Schlessinger, J. (1996). A role for PYK2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature, 383, 547–550.CrossRefGoogle Scholar
  175. 175.
    Della Rocca, G. J., Maudsley, S., Daaka, Y., Lefkowitz, R. J., & Luttrell, L. M. (1999). Pleiotropic coupling of G-protein-coupled receptors to the MAP kinase cascade: Role of focal adhesions and receptor tyrosine kinases. Journal of Biological Chemistry, 274, 13978–13984.CrossRefGoogle Scholar
  176. 176.
    Grewal, J. S., Luttrell, L. M., & Raymond, J. R. (2001). G protein-coupled receptors desensitize and downregulate EGF receptors in renal mesangial cells. Journal of Biological Chemistry, 276, 27335–27344.CrossRefGoogle Scholar
  177. 177.
    Pak, Y., Pham, N., & Rotin, D. (2002). Direct binding of the beta1 adrenergic receptor to the cyclic AMP-dependent guanine nucleotide exchange factor CNrasGEF leads to Ras activation. Molecular and Cellular Biology, 22, 7942–7952.CrossRefGoogle Scholar
  178. 178.
    Karoor, V., & Malbon, C. C. (1998). G-protein-linked receptors as substrates for tyrosine kinases: Cross-talk in signaling. Advances in Pharmacology, 42, 425–428.Google Scholar
  179. 179.
    Ali, M. S., Sayeski, P. P., Dirksen, L. B., Hayzer, D. J., Marrero, M. B., & Bernstein, K. E. (1997). Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor. Journal of Biological Chemistry, 272, 23382–23388.CrossRefGoogle Scholar
  180. 180.
    Marrero, M. B., Venema, V. J., Ju, H., Eaton, D. C., & Venema, R. C. (1998). Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: Roles of SHP-1 and SHP-2. American Journal of Physiology, 275, C1216–23.Google Scholar
  181. 181.
    Hunt, R. A., Bhat, G. J., & Baker, K. M. (1999). Angiotensin II-stimulated induction of sis-inducing factor is mediated by pertussis toxin-insensitive G(q) proteins in cardiac myocytes. Hypertension, 34, 603–608.Google Scholar
  182. 182.
    Cao, W., Luttrell, L. M., Medvedev, A. V., Pierce, K. L., Daniel, K. W., Dixon, T. M., Lefkowitz, R. J., & Collins, S. (2000). Direct binding of activated c-Src to the beta 3-adrenergic receptor is required for MAP kinase activation. Journal of Biological Chemistry, 275, 38131–38134.CrossRefGoogle Scholar
  183. 183.
    Miller, W. E., & Lefkowitz, R. J. (2001). Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Current Opinion in Cell Biology, 13, 139–145.CrossRefGoogle Scholar
  184. 184.
    Perry, S. J., & Lefkowitz, R. J. (2002). Arresting developments in heptahelical receptor signaling and regulation. Trends in Cell Biology, 12, 130–138.CrossRefGoogle Scholar
  185. 185.
    Tohgo, A., Pierce, K. L., Choy, E. W., Lefkowitz, R. J., & Luttrell, L. M. (2002). Beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. Journal of Biological Chemistry, 277, 9429–9436.CrossRefGoogle Scholar
  186. 186.
    Ahn, S., Wei, H., Garrison, T. R., & Lefkowitz, R. J. (2004). Reciprocal regulation of angiotensin receptor-activated extracellular signal-regulated kinases by beta-arrestins 1 and 2. Journal of Biological Chemistry, 279, 7807–7811.CrossRefGoogle Scholar
  187. 187.
    Azzi, M., Charest, P. G., Angers, S., Rousseau, G., Kohout, T., Bouvier, M., & Pinyero, G. (2003). Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 100, 11406–11411.CrossRefGoogle Scholar
  188. 188.
    DeFea, K. A., Zalevsky, J., Thoma, M. S., Dery, O., Mullins, R. D., & Bunnett, N. W. (2000). β-Arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. Journal of Cell Biology, 148, 1267–1281.CrossRefGoogle Scholar
  189. 189.
    Luttrell, L. M., Roudabush, F. L., Choy, E. W., Miller, W. E., Field, M. E., Pierce, K. L., & Lefkowitz, R. J. (2001). Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 98, 2449–2454.CrossRefGoogle Scholar
  190. 190.
    DeFea, K. A., Vaughn, Z. D., O’Bryan, E. M., Nishijima, D., Dery, O., & Bunnett, N. W. (2000). The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-arrestin-dependent scaffolding complex. Proceedings of the National Academy of Sciences of the United States of America, 97, 11086–11091.CrossRefGoogle Scholar
  191. 191.
    Jafri, F., El-Shewy, H. M., Luttrell, D. K., & Luttrell, L. M. (2006). Expression of a chimeric neurokinin NK-1 receptor-beta-arrestin 1 fusion protein produces constitutive ERK1/2 activation in HEK-293 cells: Probing the composition and function of the G protein-coupled receptor ‘signalsome’. Journal of Biological Chemistry, 281, 19346–19357.CrossRefGoogle Scholar
  192. 192.
    Terrillon, S., & Bouvier, M. (2004). Receptor activity-independent recruitment of beta-arrestin2 reveals specific signaling modes. EMBO Journal, 23, 3950–3961.CrossRefGoogle Scholar
  193. 193.
    Lin, F.-T., Miller, W. E., Luttrell, L. M., & Lefkowitz, R. J. (1999). Feedback regulation of beta-arrestin1 function by extracellular signal-regulated kinases. Journal of Biological Chemistry, 274, 15971–15974.CrossRefGoogle Scholar
  194. 194.
    Pitcher, J. A., Tesmer, J. J., Freeman, J. L., Capel, W. D., Stone, W. C., & Lefkowitz, R. J. (1999). Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases. Journal of Biological Chemistry, 274, 34531–34534.CrossRefGoogle Scholar
  195. 195.
    Ogier-Denis, E., Pattingre, S., El Benna, J., & Codogno, P. (2000). Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. Journal of Biological Chemistry, 275, 39090–39095.CrossRefGoogle Scholar
  196. 196.
    Elorza, A., Penela, P., Sarnago, S., & Mayor, F. Jr. (2003). MAPK-dependent degradation of G protein-coupled receptor kinase 2. Journal of Biological Chemistry, 278, 29164–29173.CrossRefGoogle Scholar
  197. 197.
    Ge, L., Ly, Y., Hollenberg, M., & DeFea, K. (2003). A beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis. Journal of Biological Chemistry, 278, 34418–34426.CrossRefGoogle Scholar
  198. 198.
    Zoudilova, M., Kumar, P., Ge, L., Wang, P., Bokoch, G. M., & DeFea, K. A. (2007). Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. Journal of Biological Chemistry, 282, 20634–20646.CrossRefGoogle Scholar
  199. 199.
    Fong, A. M., Premont, R. T., Richardson, R. M., Yu, Y. R., Lefkowitz, R. J., & Patel, D. D. (2002). Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 99, 7478–7483.CrossRefGoogle Scholar
  200. 200.
    Gesty-Palmer, D., El-Shewy, H. M., Kohout, T. A., & Luttrell, L. M. (2005). beta-Arrestin 2 expression determines the transcriptional response to lysophosphatidic acid stimulation in murine embryo fibroblasts. Journal of Biological Chemistry, 280, 32157–32167.CrossRefGoogle Scholar
  201. 201.
    Shenoy, S. K., Drake, M. T., Nelson, C. D., Houtz, D. A., Xiao, K., Madabushi, S., Reiter, E., Premont, R. T., Lichtarge, O., & Lefkowitz, R. J. (2006). beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. Journal of Biological Chemistry, 281, 1261–1273.CrossRefGoogle Scholar
  202. 202.
    Shenoy, S. K., & Lefkowitz, R. J. (2005). Receptor-specific ubiquitination of beta-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes. Journal of Biological Chemistry, 280, 15315–15324.CrossRefGoogle Scholar
  203. 203.
    Shenoy, S. K., Barak, L. S., Xiao, K., Ahn, S., Berthouze, M., Shukla, A. K., Luttrell, L. M., & Lefkowitz, R. J. (2007). Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation. Journal of Biological Chemistry, 282, 29549–29562.CrossRefGoogle Scholar
  204. 204.
    McDonald, P. H., Chow, C.-W., Miller, W. E., LaPorte, S. A., Field, M. E., Lin, F.-T., Davis, R. J., & Lefkowitz, R. J. (2000). β-Arrestin 2: A receptor-regulated MAPK scaffold for the activation of JNK3. Science, 290, 1574–1577.CrossRefGoogle Scholar
  205. 205.
    Miller, W. E., McDonald, P. H., Cai, S. F., Field, M. F., Davis, R. J., & Lefkowitz, R. J. (2001). Identification of a motif in the carboxy terminus of β-arrestin2 responsible for activation of JNK3. Journal of Biological Chemistry, 276, 27770–27777.CrossRefGoogle Scholar
  206. 206.
    Sun, Y., Cheng, Z., Ma, L., & Pei, G. (2002). Beta-arrestin 2 is critically involved in CXCR4-mediateed chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. Journal of Biological Chemistry, 277, 49212–49219.CrossRefGoogle Scholar
  207. 207.
    Luttrell, L. M., Ferguson, S. S. G., Daaka, Y., Miller, W. E., Maudsley, S., Della Rocca, G. J., Lin, F.-T., Kawakatsu, H., Owada, K., Luttrell, D. K., Caron, M. G., & Lefkowitz, R. J. (1999). β-Arrestin-dependent formation of β2-adrenergic receptor/Src protein kinase complexes. Science, 283, 655–661.CrossRefGoogle Scholar
  208. 208.
    Barlic, J., Andrews, J. D., Kelvin, A. A., Bosinger, S. E., DeVries, M. E., Xu, L., Dobransky, T., Feldman, R. D., Ferguson, S. S. G., & Kelvin, D. J. (2000). Regulation of tyrosine kinase activation and granule release through β-arrestin by CXCRI. Nature Immunology, 1, 227–233.CrossRefGoogle Scholar
  209. 209.
    Ghalayini, A. J., Desai, N., Smith, K. R., Holbrook, R. M., Elliott, M. H., & Kawakatsu, H. (2002). Light-dependent association of Src with photoreceptor rod outer segment membrane proteins in vivo. Journal of Biological Chemistry, 277, 1469–1476.CrossRefGoogle Scholar
  210. 210.
    Milano, S. K., Pace, H. C., Kim, Y. M., Brenner, C., & Benovic, J. L. (2002). Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry, 41, 3321–3328.Google Scholar
  211. 211.
    Miller, W. E., Maudsley, S., Ahn, S., Kahn, K. D., Luttrell, L. M., & Lefkowitz, R. J. (2000). β-Arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Journal of Biological Chemistry, 275, 11312–11319.CrossRefGoogle Scholar
  212. 212.
    Ahn, S., Kim, J., Lucaveche, C. L., Reedy, M. C., Luttrell, L. M., Lefkowitz, R. J., & Daaka, Y. (2002). Src-dependent tyrosine phosphorylation regulates dynamin self-assembly and ligand-induced endocytosis of the epidermal growth factor receptor. Journal of Biological Chemistry, 277, 26642–26651.CrossRefGoogle Scholar
  213. 213.
    Penela, P., Elorza, A., Sarnage, S., & Mayor, F. Jr. (2001). Beta-arrestin and c-Src-dependent degradation of G-protein-coupled receptor kinase 2. EMBO Journal, 20, 5129–5138.CrossRefGoogle Scholar
  214. 214.
    Imamura, T., Huang, J., Dalle, S., Ugi, S., Usui, I., Luttrell, L. M., Miller, W. E., Lefkowitz, R. J., & Olefsky, J. M. (2001). Beta-Arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport. Journal of Biological Chemistry, 276, 43663–43667.CrossRefGoogle Scholar
  215. 215.
    Luttrell, L. M. (2003). Location, Location, Location. Spatial and temporal regulation of MAP kinases by G protein-coupled receptors. Journal of Molecular Endocrinology, 30, 117–126.CrossRefGoogle Scholar
  216. 216.
    Nelson, C. D., Perry, S. J., Regier, D. S., Prescott, S. M., Topham, M. K., & Lefkowitz, R. J. (2007). Targeting of diacylglycerol degradation to M1 muscarinic receptors by beta-arrestins. Science, 315, 663–666.CrossRefGoogle Scholar
  217. 217.
    Bhattacharya, M., Anborgh, P. H., Babwah, A. V., Dale, L. B., Dobransky, T., Benovic, J. L., Feldman, R. D., Verdi, J. M., Rylett, R. J., & Ferguson, S. S. (2002). Beta-arrestins regulate a Ral-GDS Ral effector pathway that mediates cytoskeletal reorganization. Nature Cell Biology, 4, 547–555.Google Scholar
  218. 218.
    Goel, R., & Baldassare, J. J. (2002). Beta-arrestin 1 couples thrombin to the rapid activation of the Akt pathway. Annals of the New York Academy of Sciences, 973, 138–141.Google Scholar
  219. 219.
    Beaulieu, J. M., Sotnikova, T. D., Marion, S., Lefkowitz, R. J., Gainetdinov, R. R., & Caron, M. G. (2005). An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell, 122, 261–273.CrossRefGoogle Scholar
  220. 220.
    Kang, J., Shi, Y., Xiang, B., Qu, B., Su, W., Zhu, M., Zhang, M., Bao, G., Wang, F., Zhang, X., Yang, R., Fan, F., Chen, X., Pei, G., & Ma, L. (2005). A nuclear function of beta-arrestin1 in GPCR signaling: Regulation of histone acetylation and gene transcription. Cell, 123, 833–847.CrossRefGoogle Scholar
  221. 221.
    Ma, L., & Pei, G. (2007). Beta-arrestin signaling and regulation of transcription. Journal of Cell Science, 120, 213–218.CrossRefGoogle Scholar
  222. 222.
    Scott, M. G., Le Rouzic, E., Perianin, A., Pierotti, V., Enslen, H., Benichou, S., Marullo, S., & Benmerah, A. (2002). Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export sequence in beta-arrestin2. Journal of Biological Chemistry, 277, 37693–37701.CrossRefGoogle Scholar
  223. 223.
    Wang, P., Wu, Y., Ge, X., Ma, L., & Pei, G. (2003). Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. Journal of Biological Chemistry, 278, 11648–11653.CrossRefGoogle Scholar
  224. 224.
    Witherow, D. S., Garrison, T. R., Miller, W. E., & Lefkowitz, R. J. (2004). Beta-arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha. Proceedings of the National Academy of Sciences of the United States of America, 101, 8603–8607.CrossRefGoogle Scholar
  225. 225.
    Fan, H., Luttrell, L. M., Tempel, G. E., Senn, J. J., Halushka, P. V., & Cook, J. A. (2007). β-Arrestins 1 and 2 differentially regulate LPS-induced signaling and pro-inflammatory gene expression. Molecular Immunology, 44, 3092–3099.CrossRefGoogle Scholar
  226. 226.
    Chen, W., Hu, L. A., Semenov, M. V., Yanagawa, S., Kikuchi, A., Lefkowitz, R. J., & Miller, W. E. (2001). Beta-Arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins. Proceedings of the National Academy of Sciences of the United States of America, 98, 14889–14894.CrossRefGoogle Scholar
  227. 227.
    Chen, W., ten Berge, D., Brown, J., Ahn, S., Hu, L. A., Miller, W. E., Caron, M. G., Barak, L. S., Nusse, R., & Lefkowitz, R. J. (2003). Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science, 301, 1391–1394.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  1. 1.Division of Endocrinology, Diabetes and Medical Genetics, Department of MedicineMedical University of South CarolinaCharlestonUSA
  2. 2.Department of Biochemistry & Molecular BiologyMedical University of South CarolinaCharlestonUSA
  3. 3.The Ralph H. Johnson Veterans Affairs Medical CenterCharlestonUSA

Personalised recommendations