Advertisement

Molecular Biotechnology

, Volume 39, Issue 1, pp 39–48 | Cite as

Apoptotic Induction with Bifunctional E.coli Cytosine Deaminase-Uracil Phosphoribosyltransferase Mediated Suicide Gene Therapy is Synergized by Curcumin Treatment In vitro

  • P. Gopinath
  • Siddhartha Sankar GhoshEmail author
Research

Abstract

Development of novel suicide gene therapy vector with potential application in cancer treatment has a great impact on human health. Investigation to understand molecular mechanism of cell death is necessary to evaluate the therapeutic application of suicide vectors. For example, the bifunctional E.coli cytosine deaminase & uracil phosphoribosyltransferase fusion (CD-UPRT) gene expression is known to sensitize a wide range of cells toward nontoxic prodrug 5-flurocytosine (5-FC) by converting it to toxic compounds, but the exact pathway of cell death is yet to be defined. Herein, we investigated the mechanism of cell death by 5-FC/CD-UPRT suicide system in both cancer and non-cancer cells and found that the optimum 5-FC concentration led to programmed cell death in vitro. The CD-UPRT expression of transfected cells was measured by the RT-PCR analysis. Biochemical assays, such as mitochondrial activity (MTS) and lactate dehydrogenase (LDH) measurements exhibited cell death. Microscopic experiments showed characteristic onset of apoptosis which was further supported by internucleosomal DNA cleavage of BrdU labeled cellular DNA, appearance of characteristic laddering of chromosomal DNA and involvement of caspase pathway. Furthermore, the 5-FC/CD-UPRT-mediated apoptosis was potentiated with addition of a known anticancer agent curcumin. Our in vitro studies confirmed synergistic induction of apoptotic pathway in the combination treatment. Therefore, combination of 5-FC/CD-UPRT with curcumin could be a potential chemosensitization strategy for cancer treatment.

Keywords

Suicide gene therapy Apoptosis CD-UPRT 5-FC Curcumin 

Notes

Acknowledgments

This research work was supported by the Department of Biotechnology [BT/PR9988/NNT/28/76/2007], Council of Scientific and Industrial Research [No.37 (1248)/06/EMR-II] Government of India. Assistance from Central instruments facility (CIF) IIT Guwahati, for confocal and SEM analysis is gratefully acknowledged. We are also thankful to Dr. Mitali Chatterjee (Department of Pharmacology, Institute of Postgraduate Medical Education & Research, Kolkata, India) for her help and suggestions.

Supplementary material

12033_2007_9026_MOESM1_ESM.pdf (97 kb)
(PDF 97 kb)

References

  1. 1.
    Ghosh, S. S., Takahashi, M., Parashar, B., Thummala, N. R., Chowdhury, N.R., & Chowdhury, J. R. (2000). Liver directed gene therapy; promises, problems and prospects at the turn of the century. Journal of Hepatology, 32, 238–252.PubMedCrossRefGoogle Scholar
  2. 2.
    Ghosh, S. S., Gopinath, P., & Ramesh, A. (2006). Adenoviral vectors: A promising tool for Gene therapy. Applied Biochemistry and Biotechnology, 133, 9–29.PubMedCrossRefGoogle Scholar
  3. 3.
    Springer, C. J., & Duvaz, I. N. (2000). Prodrug-activating systems in suicide gene therapy. Journal of Clinical Investigation, 105, 1161–1167.PubMedCrossRefGoogle Scholar
  4. 4.
    El-Aneed, A. (2004). Current strategies in cancer gene therapy. European Journal of Pharmacology, 498, 1–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Kurozumi, K., Tamiya, T., Ono, Y., Otsuka, S., Kambara, H., Adachi, Y., Ichikawa, T., Hamada, H., & Ohmoto, T. (2004). Apoptosis induction with 5-fluorocytosine/cytosine deaminase gene therapy for human malignant glioma cells mediated by adenovirus. Journal of Neuro-Oncology, 66, 117–127.PubMedCrossRefGoogle Scholar
  6. 6.
    Richard, C., Duivenvoorden, W., Bourbeau, D., Massie, B., Roa, W., Yau, J., & Th’ng, J. (2007). Sensitivity of 5-fluorouracil-resistant cancer cells to adenovirus suicide gene therapy. Cancer Gene Therapy, 14, 57–65.PubMedCrossRefGoogle Scholar
  7. 7.
    Kambara, H., Tamiya, T., Ono, Y., Ohtsuka, S., Terada, K., Adachi, Y., Ichikawa, T., Hamada, H., & Ohmoto, T. (2002). Combined radiation and gene therapy for brain tumors with adenovirus-mediated transfer of cytosine deaminase and uracil phosphoribosyltransferase genes. Cancer Gene Therapy 9, 840–845.PubMedCrossRefGoogle Scholar
  8. 8.
    Chu, R. L., Post, D. E., Khuri, F. R., & Van Meir, E. G. (2004). Use of replicating oncolytic adenoviruses in combination therapy for cancer. Clinical Cancer Research, 10, 5299–5312.PubMedCrossRefGoogle Scholar
  9. 9.
    Pillai, G. R., Srivastava, A. S., Hassanein, T. I., Chauhan, D. P., & Carrier, E. (2004). Induction of apoptosis in human lung cancer cells by curcumin. Cancer Letters, 208, 163–170.CrossRefGoogle Scholar
  10. 10.
    Huang, M. T., Lou, Y. R., Ma, W., Newmark, H. L., Reuhl, K. R., & Conney, A. H. (1994). Inhibitory effects of dietary curcumin on fore stomach, duodenal, and colon carcinogenesis in mice. Cancer Research, 54, 5841–5847.PubMedGoogle Scholar
  11. 11.
    Belakavadi, M., & Salimath, B. P. (2005). Mechanism of inhibition of ascites tumor growth in mice by curcumin is mediated by NF-κB and caspase activated DNase. Molecular and Cellular Biochemistry, 273, 57–67.PubMedCrossRefGoogle Scholar
  12. 12.
    Choudhuri, T., Pal, S., Das, T., & Sa, G. (2005). Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. Journal of Biological Chemistry, 280, 20059–20068.PubMedCrossRefGoogle Scholar
  13. 13.
    Ribble, D., Goldstein, N. B., Norris, D. A., & Shellman, Y. G. (2005). A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnology, 5, 12.PubMedCrossRefGoogle Scholar
  14. 14.
    Xia, K., Liang, D., Tang, A., Feng, Y., Zhang, J., Pan, Q., Long, Z., Dai, H., Cai, F., Wu, L., Zhao, S., Chen, Z., & Xia, J. (2004). A novel fusion suicide gene yeast CDglyTK plays a role in radio-gene therapy of nasopharyngeal carcinoma. Cancer Gene Therapy, 11, 790–796.PubMedCrossRefGoogle Scholar
  15. 15.
    Miyagi, T., Koshida, K., Hori, O., Konaka, H., Katoh, H., Kitagawa, Y., Mizokami, A., Egawa, M., Ogawa, S., Hamada, H., & Namiki, M. (2003). Gene therapy for prostate cancer using the cytosine deaminase/uracil phosphoribosyltransferase suicide system. Journal of Gene Medicine, 5, 30–37.PubMedCrossRefGoogle Scholar
  16. 16.
    Cohen, E., Ophir, I., & Shaul, Y. B. (1999). Induced differentiation in HT29, a human colon adenocarcinoma cell line. Journal of Cell Science, 112, 2657–2666.PubMedGoogle Scholar
  17. 17.
    Dini, L. (2005). Apoptosis induction in DU-145 human prostate carcinoma cells. Tissue & Cell, 37, 379–384.CrossRefGoogle Scholar
  18. 18.
    Wolf, B. B., Schuler, M., Echeverri, F., & Green, D. R. (1999). Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. Journal of Biological Chemistry, 274, 30651–30656.PubMedCrossRefGoogle Scholar
  19. 19.
    Ishihara, Y., & Shimamoto, N. (2006). Involvement of endonuclease G in nucleosomal DNA fragmentation under sustained endogenous oxidative stress. Journal of Biological Chemistry, 281, 6726–6733.PubMedCrossRefGoogle Scholar
  20. 20.
    Bielak-Zmijewska, A., Koronkiewicz, M., Skierski, J., Piwocka, K., Radziszewska, E., & Sikora, E. (2000). Effect of curcumin on the apoptosis of rodent and human nonproliferating and proliferating lymphoid Cells. Nutrition and Cancer, 38, 131–138.PubMedCrossRefGoogle Scholar
  21. 21.
    Fang, J., Lu, J., & Holmgren, A. (2005). Thioredoxin reductase is irreversibly modified by curcumin: A novel molecular mechanism for its anticancer activity. Journal of Biological Chemistry 280, 25284–25290.PubMedCrossRefGoogle Scholar
  22. 22.
    Nakamura, N., & Wada, Y. (2000). Properties of DNA fragmentation activity generated by ATP depletion. Cell Death and Differentiation, 7, 477–484.PubMedCrossRefGoogle Scholar
  23. 23.
    Kusunoki, N., Yamazaki, R., Kitasato, H., Beppu, M., Aoki, H., & Kawai, S. (2004). Triptolide, an active compound identified in a traditional Chinese herb, induces apoptosis of rheumatoid synovial fibroblasts. BMC Pharmacology, 4, 2.PubMedCrossRefGoogle Scholar
  24. 24.
    Park, H. J., Kim, Y. J., Leem, K., Park, S. J., Seo, J. C., Kim, H. K., & Chung, J. H. (2005). Coptis japonica root extract induces apoptosis through caspase3 activation in SNU-668 human gastric cancer cells. Phytotherapy Research, 19, 189–192.PubMedCrossRefGoogle Scholar
  25. 25.
    Niculescu-Duvaz, I., & Springer, C. J. (2005). Introduction to the background, principles, and state of the art in suicide gene therapy. Molecular Biotechnology 30, 71–88.PubMedCrossRefGoogle Scholar
  26. 26.
    Maruyama-Tabata, H., Harada, Y., Matsumura, T., Satoh, E., Cui, F., Iwai, M., Kita, M., Hibi, S., Imanishi, J., Sawada, T., & Mazda, O. (2000). Effective suicide gene therapy in vivo by EBV-based plasmid vector coupled with polyamidoamine dendrimer. Gene Therapy 7, 53–60.PubMedCrossRefGoogle Scholar
  27. 27.
    Kanduc, D., Mittelman, A., Serpico, R., Sinigaglia, E., Sinha, A. A., Natale, C., Santacroce, R., Di Corcia, M. G., Lucchese, A., Dini, L., Pani, P., Santacroce, S., Simone, S., Bucci, R., & Farber, E. (2002). Cell death: Apoptosis versus necrosis (review). International Journal of Oncology, 21, 165–170.PubMedGoogle Scholar
  28. 28.
    DeNardo, S. J. (2006). Combined molecular targeting for cancer therapy: A new paradigm in need of molecular imaging. Journal of Nuclear Medicine, 47, 4–5.PubMedGoogle Scholar
  29. 29.
    Howells, L. M., Mitra, A., & Manson, M. M. (2007). Comparison of oxaliplatin- and curcumin-mediated antiproliferative effects in colorectal cell lines. International Journal of Cancer, 121, 2929–2937.CrossRefGoogle Scholar
  30. 30.
    Shpitz, B., Giladi, N., Sagiv, E., Lev-Ari, S., Liberman, E., Kazanov, D., & Arber, N. (2006). Celecoxib and curcumin additively inhibit the growth of colorectal cancer in a rat model. Digestion, 74, 140–144.PubMedCrossRefGoogle Scholar
  31. 31.
    Huang, P., Robertson, L. E., Wright, S., & Plunkett, W. (1995). High molecular weight DNA fragmentation: A critical event in nucleoside analogue-induced apoptosis in leukemia cells. Clinical Cancer Research, 1, 1005–1013.PubMedGoogle Scholar
  32. 32.
    Dorai, T., Cao, Y., Dorai, B., Buttyan, R., & Katz, A. E. (2001). Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. The Prostate 47, 293–303.PubMedCrossRefGoogle Scholar
  33. 33.
    Syng-ai, C., Leela Kumari, A., & Khar, A. (2004). Effect of curcumin on normal and tumor cells: Role of glutathione and bcl-2. Molecular Cancer Therapeutics, 3, 1101–1108.PubMedGoogle Scholar
  34. 34.
    Khor, T. O., Keum, Y., Lin, W., Kim, J., Hu, R., Shen, G., Xu, C., Gopalakrishnan, A., Reddy, B., Zheng, X., Conney, A. H., & Kong, A.T. (2006). Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Research, 66, 613–621.PubMedCrossRefGoogle Scholar
  35. 35.
    Imaizumi, K., Hasegawa, Y., Kawabe, T., Emi, N., Saito, H., Naruse, K., & Shimokata, K. (1998) Bystander tumoricidal effect and gap junctional communication in lung cancer cell lines. American Journal of Respiratory Cell and Molecular Biology, 18, 205–212.PubMedGoogle Scholar
  36. 36.
    Khatri, A., Zhang, B., Doherty, E., Chapman, J., Ow, K., Pwint, H., Wilks, R. M., & Russell, P. J. (2006). Combination of cytosine deaminase with uracil phosphoribosyl transferase leads to local and distant bystander effects against RM1 prostate cancer in mice. Journal of Gene Medicine, 8, 1086–1096.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Department of BiotechnologyIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Centre for NanotechnologyIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations