Molecular Biotechnology

, Volume 38, Issue 3, pp 269–275

The Genome Browser at UCSC for Locating Genes, and Much More!

Review

Abstract

For beginners in the field, this review highlights the key features of the genome browser at UCSC for data display, and provides nearly step-by-step procedures for creating publication quality maps. The browser offers an engine (Blat) for searching a known genomic DNA for correspondence with protein and DNA sequences specified by the user. The results provide links to graphical displays, known as maps. Users can create “designer maps” by adding Tracks to view various types of data and specific landmarks. The browser offers an extensive list of options. They include the position of annotated genes, the position of reference cDNA sequences (RefSeq from GenBank), the position of alternatively spliced mRNA species, and predictions derived from computational models to identify potential transcription start sites and potential protein binding elements in genomic DNA. Several tracks can be tailored for comparative genomics. The browser also offers tracks for displaying large-scale experimental data including gene expression profiles, exon chips, and single-nucleotide-polymorphisms.

Keywords

The Human Genome Project Genome browsers Gene mapping Gene display Landmarks in genomic DNA 

References

  1. 1.
    Collins, F. S., Green, E. D., Guttmacher, A. E., & Guyer, M. S. (2003). A vision for the future of genomics research. Nature, 422, 835–847.PubMedCrossRefGoogle Scholar
  2. 2.
    Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K., Chetvernin, V., Church, D. M., DiCuccio, M., Edgar, R., Federhen, S., Geer, L. Y., Kapustin, Y., Khovayko, O., Landsman, D., Lipman, D. J., Madden, T. L., Maglott, D. R., Ostell, J., Miller, V., Pruitt, K. D., Schuler, G. D., Sequeira, E., Sherry, S. T., Sirotkin, K., Souvorov, A., Starchenko, G., Tatusov, R. L., Tatusova, T. A., Wagner, L., & Yaschenko, E. (2007). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 35, D5–D12.PubMedCrossRefGoogle Scholar
  3. 3.
    Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., & Haussler, D. (2002). The human genome browser at UCSC. Genome Research, 12, 996–1006.PubMedCrossRefGoogle Scholar
  4. 4.
    Kuhn, R. M., Karolchik, D., Zweig, A. S., Trumbower, H., Thomas, D. J., Thakkapallayil, A., Sugnet, C. W., Stanke, M., Smith, K. E., Siepel, A., Rosenbloom, K. R., Rhead, B., Raney, B. J., Pohl, A., Pedersen, J. S., Hsu, F., Hinrichs, A. S., Harte, R. A., Diekhans, M., Clawson, H., Bejerano, G., Barber, G. P., Baertsch, R., Haussler, D., & Kent, W. J. (2007). The UCSC genome browser database, update 2007. Nucleic Acids Research, 35, D668–D673.PubMedCrossRefGoogle Scholar
  5. 5.
    Hubbard, T. J., Aken, B. L., Beal, K., Ballester, B., Caccamo, M., Chen, Y., Clarke, L., Coates, G., Cunningham, F., Cutts, T., Down, T., Dyer, S. C., Fitzgerald, S., Fernandez-Banet, J., Graf, S., Haider, S., Hammond, M., Herrero, J., Holland, R., Howe, K., Johnson, N., Kahari, A., Keefe, D., Kokocinski, F., Kulesha, E., Lawson, D., Longden, I., Melsopp, C., Megy, K., Meidl, P., Ouverdin, B., Parker, A., Prlic, A., Rice, S., Rios, D., Schuster, M., Sealy, I., Severin, J., Slater, G., Smedley, D., Spudich, G., Trevanion, S., Vilella, A., Vogel, J., White, S., Wood, M., Cox, T., Curwen, V., Durbin, R., Fernandez-Suarez, X. M., Flicek, P., Kasprzyk, A., Proctor, G., Searle, S., Smith, J., Ureta-Vidal, A., & Birney, E. (2007). Ensembl 2007. Nucleic Acids Research, 35, D610–D617.PubMedCrossRefGoogle Scholar
  6. 6.
    Kent, W. J. (2002). BLAT—the BLAST-like alignment tool. Genome Research, 12, 656–664. doi: 10.1101/gr.229202 Article published online before March 2002.Google Scholar
  7. 7.
    Bina, M. (2006). Use of genome browsers to locate your favorite genes. Methods in Molecular Biology, 338, 1–7.PubMedGoogle Scholar
  8. 8.
    Bina, M. (2006). Identification and mapping of paralogous genes on a known genomic DNA sequence. Methods in Molecular Biology, 338, 21–29.PubMedGoogle Scholar
  9. 9.
    Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology, tool for the unification of biology. Nature Genetics, 25, 25–29. DOI: 10.1038/75556.PubMedCrossRefGoogle Scholar
  10. 10.
    Gene Ontology Consortium. (2001). Creating the gene ontology resource, design and implementation. Genome Research, 11, 1425–1433. DOI: 10.1101/gr.180801.CrossRefGoogle Scholar
  11. 11.
    ENCODE Project Consortium. (2004). The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 306, 636–640.CrossRefGoogle Scholar
  12. 12.
    ENCODE Project Consortium. (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447, 799–816.CrossRefGoogle Scholar
  13. 13.
    Thomas, D. J., Rosenbloom, K. R., Clawson, H., Hinrichs, A. S., Trumbower, H., Raney, B. J., Karolchik, D., Barber, G. P., Harte, R. A., Hillman-Jackson, J., Kuhn, R. M., Rhead, B. L., Smith, K. E., Thakkapallayil, A., Zweig, A. S., Haussler, D., & Kent, W. J. (2007). The ENCODE Project at UC Santa Cruz. Nucleic Acids Research, 35, D663–D667.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations