Molecular Biotechnology

, Volume 37, Issue 3, pp 187–194

Secretory Expression of Nattokinase from Bacillus subtilis YF38 in Escherichia coli

Original Paper

Abstract

Nattokinase producing bacterium, B. subtilis YF38, was isolated from douchi, using the fibrin plate method. The gene encoding this enzyme was cloned by polymerase chain reaction (PCR). Cytoplasmic expression of this enzyme in E. coli resulted in inactive inclusion bodies. But with the help of two different signal peptides, the native signal peptide of nattokinase and the signal peptide of PelB, active nattokinase was successfully expressed in E. coli with periplasmic secretion, and the nattokinase in culture medium displayed high fibrinolytic activity. The fibrinolytic activity of the expressed enzyme in the culture was determined to reach 260 urokinase units per micro-liter when the recombinant strain was induced by 0.7 mmol l−1 isopropyl-β-D- thiogalactopyranoside (IPTG) at 20°C for 20 h, resulting 49.3 mg active enzyme per liter culture. The characteristic of this recombinant nattokinase is comparable to the native nattokinase from B. subtilis YF38. Secretory expression of nattokinase in E. coli would facilitate the development of this enzyme into a therapeutic product for the control and prevention of thrombosis diseases.

Keywords

Nattokinase Fibrinolytic Subtilisin Douchi Expression Secretion E. coli 

References

  1. 1.
    Peng, Y., Huang, Q., Zhang, R. H., & Zhang, Y. Z. (2003) Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comparative Biochemistry and Physiology. B. Biochemistry and Molecular Biology, 134, 45–52.CrossRefGoogle Scholar
  2. 2.
    Wang, C. T., Ji, B. P., Nout, R., Li, P. L., Ji, H., & Chen, L. F. (2006) Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi. Journal of Industrial Microbiology & Biotechnology, 33, 750–758.CrossRefGoogle Scholar
  3. 3.
    Kim, S. H., Choi, N. S. (2000) Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp. strain DJ-4 screened from Doen-Jang. Bioscience, Biotechnology, and Biochemistry, 64, 1722–1725.PubMedCrossRefGoogle Scholar
  4. 4.
    Kim, W., Choi, K., Kim, Y., Park, H., Choi, J., Lee, Y., Oh, H., Kwon, I., & Lee, S. (1996) Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11–4 screened from chungkook-jang. Applied and Environmental Microbiology, 62, 2482–2488.PubMedGoogle Scholar
  5. 5.
    Sumi, H., Hamada, H., Tsushima, H., Mihara, H., & Muraki, H. (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto; a typical and popular soybean food in the Japanese diet. Experientia, 43, 1110–1111.PubMedCrossRefGoogle Scholar
  6. 6.
    Urano, T., Ihara, H., Umemura, K., Suzuki, Y., Oike, M., Akita, S., Tsukamoto, Y., Suzuki, I., & Takada, A. (2001) The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis cleaves and inactivates plasminogen activator inhibitor type I. The Journal of Biological Chemistry, 27, 24690–24696.CrossRefGoogle Scholar
  7. 7.
    Sumi, H., Hamada, H., Nakanishi, K., & Hiratani, H. (1990) Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematologica, 84, 139–143.PubMedCrossRefGoogle Scholar
  8. 8.
    Suzuki, Y., Kondo, K., Matsumoto, Y., Zhao, B. Q., Otsuguro, K., Maeda, T., Tsukamoto, Y., Urano, T., & Umemura, K. (2003) Dietary supplementation of fermented soybean, natto, suppresses intimal thickening and modulates the lysis of mural thrombi after endothelial injury in rat femoral artery. Basic Life Sciences, 73, 1289–1298.CrossRefGoogle Scholar
  9. 9.
    Milner, M., & Makise, K. (2002) Natto and its active ingredient nattokinase: A potent and safe thrombolytic agent. Alternative & Complementary Therapies, 8, 157–194.CrossRefGoogle Scholar
  10. 10.
    Choi, N. S., Chang, K. T., Maeng, P.J., & Kim, S. H. (2004) Cloning, expression, and fibrin (ogen)olytic properties of a subtilisin DJ-4 gene from Bacillus sp. DJ-4. FEMS Microbiology Letters, 236, 325–331.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang, R. H., Xiao, L., Peng, Y., Wang, H. Y., Bai, F., & Zhang, Y. Z. (2005) Gene expression and characteristics of a novel fibrinolytic enzyme (subtilisin DFE) in Escherichia coli. Letters in Applied Microbiology, 41, 190–195.PubMedCrossRefGoogle Scholar
  12. 12.
    Chiang, C. J., Chen, H. C., Chao, Y. P., & Tzen, J. T. (2005) Efficient system of artificial oil bodies for functional expression and purification of recombinant nattokinase in Escherichia coli. Journal of Agricultural and Food Chemistry, 53, 4799–4804.PubMedCrossRefGoogle Scholar
  13. 13.
    Gregory, G. & Heyneker, H. L. (1988). Secretion of correctly processed human growth hormone in E. coli and Pseudomonas. US patent 4755465.Google Scholar
  14. 14.
    Shahhoseini, M., Ziaee, A. A., & Ghaemi, N. (2003) Expression and secretion of an alpha-amylase gene from a native strain of Bacillus licheniformis in Escherichia coli by T7 promoter and putative signal peptide of the gene. Journal of Applied Microbiology, 95, 1250–1254.PubMedCrossRefGoogle Scholar
  15. 15.
    Astrup, T., & Sterndorff, I. (1953) A fibrinolytic system in human milk. Proceedings of the Society for Experimental Biology and Medicine, 84, 605–608.PubMedGoogle Scholar
  16. 16.
    Holt, J. G. (1994) Bergey’s manual of determinative bacteriology, (9th ed.). Baltimore: Williams & Wilkins.Google Scholar
  17. 17.
    Harlow, E., & Lane, D. (1988) Antibodies, a laboratory manual. NY: Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
  18. 18.
    Pappas, M.G., Hajkowski, R., Hockmeyer, W.T. (1984) Standardization of the dot enzyme-linked immunosorbent assay (Dot-ELISA) for human visceral leishmaniasis. The American Journal of Tropical Medicine and Hygiene, 33, 1105–1111.PubMedGoogle Scholar
  19. 19.
    Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989) Molecular cloning: A laboratory manual, (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  20. 20.
    Nakamura, T., Yamagata, Y., & Ichishima, E. (1992) Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Bioscience, Biotechnology, and Biochemistry, 56, 1869–1871.PubMedCrossRefGoogle Scholar
  21. 21.
    Orsini, G., Brandazza, A., Sarmientos, P., Molinari, A., Lansen, J., & Cauet, G. (1991) Efficient renaturation and fibrinolytic properties of prourokinase and a deletion mutant expressed in Escherichia coli as inclusion bodies. European Journal of Biochemistry, 195, 691–697.PubMedCrossRefGoogle Scholar
  22. 22.
    Jana, S., & Deb, J. K. (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Applied Microbiology and Biotechnology, 67, 289–298.PubMedCrossRefGoogle Scholar
  23. 23.
    Lucic, M. R., Forbes, B. E., Grosvenor, S. E., Carr, J. M., Wallace, J. C., & Forsberg, G. (1998) Secretion in Escherichia coli and phage-display of recombinant insulin-like growth factor binding protein-2. Journal of Biotechnology, 61, 95–108.PubMedCrossRefGoogle Scholar
  24. 24.
    Pfeifer, B. A., Admiraal, S. J., Gramajo, H., Cane, D. E., & Khosla, C. (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science, 291, 1790–1792.PubMedCrossRefGoogle Scholar
  25. 25.
    Missiakas, D., & Raina, S. (1997) Protein folding in the bacterial periplasm. Journal of Bacteriology, 179, 2465–2471.PubMedGoogle Scholar
  26. 26.
    Sugamata, Y., & Shiba, T. (2005) Improved secretory production of recombinant proteins by random mutagenesis of hlyB, an alpha-hemolysin transporter from Escherichia coli. Applied and Environmental Microbiology, 71, 656–662.PubMedCrossRefGoogle Scholar
  27. 27.
    Ikemura, H., Takagi, H., & Inouye, M. (1987) Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. The Journal of Biological Chemistry, 262, 7859–7864.PubMedGoogle Scholar
  28. 28.
    O’Donohue, M. J., & Beaumont, A. (1996) The roles of the prosequence of thermolysin in enzyme inhibition and folding in vitro. The Journal of Biological Chemistry, 271, 26477–26481.PubMedCrossRefGoogle Scholar
  29. 29.
    Fu, X., Inouye, M., & Shinde, U. (2000) Folding pathway mediated by an intramolecular chaperone. The inhibitory and chaperone functions of the subtilisin propeptide are not obligatorily linked. The Journal of Biological Chemistry, 275, 16871–16878.PubMedCrossRefGoogle Scholar
  30. 30.
    Baker, D., Sohl, J. L., & Agard, D. A. (1992) A protein-folding reaction under kinetic control. Nature, 356, 263–265.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.State Key Laboratory of Microbial ResourcesChinese Academy of SciencesBeijingChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina
  3. 3.Center for Metabolic Engineering of Microorganisms, Institute of MicrobiologyChinese Academy of SciencesBeijingChina

Personalised recommendations