Molecular Biotechnology

, 37:246 | Cite as

An Overview of Structural DNA Nanotechnology

  • Nadrian C. SeemanEmail author


Structural DNA Nanotechnology uses unusual DNA motifs to build target shapes and arrangements. These unusual motifs are generated by reciprocal exchange of DNA backbones, leading to branched systems with many strands and multiple helical domains. The motifs may be combined by sticky ended cohesion, involving hydrogen bonding or covalent interactions. Other forms of cohesion involve edge-sharing or paranemic interactions of double helices. A large number of individual species have been developed by this approach, including polyhedral catenanes, a variety of single-stranded knots, and Borromean rings. In addition to these static species, DNA-based nanomechanical devices have been produced that are ultimately targeted to lead to nanorobotics. Many of the key goals of structural DNA nanotechnology entail the use of periodic arrays. A variety of 2D DNA arrays have been produced with tunable features, such as patterns and cavities. DNA molecules have be used successfully in DNA-based computation as molecular representations of Wang tiles, whose self-assembly can be programmed to perform a calculation. About 4 years ago, on the fiftieth anniversary of the double helix, the area appeared to be at the cusp of a truly exciting explosion of applications; this was a correct assessment, and much progress has been made in the intervening period.


Branched DNA Sticky-ended cohesion DNA-based computation DNA polyhedra DNA nanomechanical devices DNA architecture DNA crystals Translation devices Nanoparticle organization 



I am grateful to all of my students, postdocs and collaborators for their contributions to the founding of structural DNA nanotechnology. This research has been supported by grants GM-29554 from NIGMS, grants DMI-0210844, EIA-0086015, CCF-0432009, CCF-0523290 and CTS-0548774, CTS-0608889 from the NSF, 48681-EL from ARO, DE-FG02-06ER64281 from DOE (Subcontract from the Research Foundation of SUNY), and a grant from the W.M. Keck Foundation.


  1. 1.
    Seeman, N. C. (2005). Structural DNA Nanotechnology: An overview. In Sandra J. Rosenthal, & David W. Wright (Eds.), Methods in molecular biology 303: Bionanotechnology protocols (pp. 143–166). Totowa, NJ: Humana Press.Google Scholar
  2. 2.
    Watson, J. D., & Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature, 171, 737–738.PubMedCrossRefGoogle Scholar
  3. 3.
    Seeman, N. C. (1982). Nucleic acid junctions and lattices. Journal of Theoretical Biology, 99, 237–247.PubMedCrossRefGoogle Scholar
  4. 4.
    Robinson, B. H., & Seeman, N. C. (1987). The design of a biochip. Protein Engineering, 1, 295–300.PubMedCrossRefGoogle Scholar
  5. 5.
    Winfree, E. (1996). On the computational power of DNA annealing and ligation. In E. J. Lipton, & E. B. Baum (Eds.), DNA Based Computing (pp. 199–219). Providence, Am. Math. Soc.Google Scholar
  6. 6.
    Seeman, N. C. (2000). In the nick of space: Generalized nucleic acid complementarity and the development of DNA nanotechnology. Synlett, 2000, 1536–1548.CrossRefGoogle Scholar
  7. 7.
    Cohen, S. N., Chang, A. C.Y., Boyer, H. W., & Helling, R. B. (1973). Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Sciences of the United States of America, 70, 3240–3244.PubMedCrossRefGoogle Scholar
  8. 8.
    Qiu, H., Dewan, J. C., & Seeman, N. C. (1997). A DNA decamer with a sticky end: The crystal structure of d-CGACGATCGT. Journal of Molecular Biology, 267, 881–898.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang, X., Yan, H., Shen, Z., & Seeman, N. C. (2002). Paranemic cohesion of topologically-closed DNA molecules. Journal of the American Chemical Society, 124, 12940–12941.PubMedCrossRefGoogle Scholar
  10. 10.
    Shih, W. M., Quispe, J. D., & Joyce, G. F. (2004). A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 427, 618–621.PubMedCrossRefGoogle Scholar
  11. 11.
    Shen, Z., Yan, H., Wang, T., & Seeman, N. C. (2004). Paranemic crossover DNA: A generalized Holliday structure with applications in nanotechnology. Journal of the American Chemical Society, 126, 1666–1674.PubMedCrossRefGoogle Scholar
  12. 12.
    Yan, H., & Seeman, N. C. (2003). Edge-sharing motifs in DNA nanotechnology. Journal of Supramolecular Chemistry, 1, 229–237.Google Scholar
  13. 13.
    Kuzuya, A., Wang, R., Sha, R., & Seeman, N. C. (2007). Six-helix and eight-helix DNA nanotubes assembled from half-tubes. NanoLetters (in press).Google Scholar
  14. 14.
    Seeman, N. C. (2001). DNA nicks and nodes and nanotechnology. NanoLetters, 1, 22–26.Google Scholar
  15. 15.
    Holliday, R. (1964). A mechanism for gene conversion in fungi. Genetical Research, 5, 282–304.CrossRefGoogle Scholar
  16. 16.
    Fu, T.-J., & Seeman, N. C. (1993). DNA double crossover structures. Biochemistry, 32, 3211–3220.PubMedCrossRefGoogle Scholar
  17. 17.
    Schwacha, A., & Kleckner, N. (1995). Identification of double Holliday junctions as intermediates in meiotic recombination. Cell, 83, 783–791.PubMedCrossRefGoogle Scholar
  18. 18.
    LaBean, T., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J. H., & Seeman, N. C. (2000). The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. Journal of the American Chemical Society, 122, 1848–1860.CrossRefGoogle Scholar
  19. 19.
    Yan, H., Zhang, X., Shen, Z., & Seeman, N. C. (2002). A robust DNA mechanical device controlled by hybridization topology. Nature, 415, 62–65.PubMedCrossRefGoogle Scholar
  20. 20.
    Li, X., Yang, X., Qi, J., & Seeman, N. C. (1996). Antiparallel DNA double crossover molecules as components for nanoconstruction. Journal of the American Chemical Society, 118, 6131–6140.CrossRefGoogle Scholar
  21. 21.
    Mathieu, F., Liao, S., Mao, C., Kopatsch, J., Wang, T., & Seeman, N. C. (2005). Six-helix bundles designed from DNA. NanoLetters, 5, 661–665.Google Scholar
  22. 22.
    Liu, D., Wang, M., Deng, Z., Walulu, R., & Mao, C. (2004). Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. Journal of the American Chemical Society, 126, 2324–2325.PubMedCrossRefGoogle Scholar
  23. 23.
    Zheng, J., Constantinou, P. E., Micheel, C., Alivisatos, A. P., Kiehl, R. A., & Seeman, N. C. (2006). 2D nanoparticle arrays show the organizational power of robust DNA motifs. NanoLetters, 6, 1502–1504.Google Scholar
  24. 24.
    Constantinou, P. E., Wang, T., Kopatsch, J, Israel, L. B., Zhang, X., Ding, B., Sherman, W. B., Wang, X, Zheng, J., Sha, R., & Seeman, N. C. (2006). Double cohesion in structural DNA nanotechnology. Organic & Biomolecular Chemistry, 4, 3414–3419.CrossRefGoogle Scholar
  25. 25.
    Goodman, R. P., Schaap, I. A.T., Tardin, C. F., Erben, C. M., Berry, R. M., Schmidt, C. F., & Turberfield, A. J. (2005). Rapid chiral assembly of rigid DNA building blocks form molecular fabrication. Science, 310, 1661–1664.PubMedCrossRefGoogle Scholar
  26. 26.
    Caruthers, M. H. (1985). Gene synthesis machines: DNA chemistry and its uses. Science, 230, 281–285.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang, Y., & Seeman, N. C. (1992) A solid-support methodology for the construction of geometrical objects from DNA. Journal of the American Chemical Society, 114, 2656–2663.CrossRefGoogle Scholar
  28. 28.
    Chen, J., & Seeman, N. C. (1991). The synthesis from DNA of a molecule with the connectivity of a cube. Nature, 350, 631–633.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang, Y., & Seeman, N. C. (1994). The construction of a DNA truncated octahedron. Journal of the American Chemical Society, 116, 1661–1669.CrossRefGoogle Scholar
  30. 30.
    Qi, J., Li, X., Yang, X., & Seeman, N. C. (1996). The ligation of triangles built from bulged three-arm DNA branched junctions. Journal of the American Chemical Society, 118, 6121–6130.CrossRefGoogle Scholar
  31. 31.
    Hagerman, P. J. (1988). Flexibility of DNA. Annual Review of Biophysics and Biophysical Chemistry, 17, 265–286.PubMedCrossRefGoogle Scholar
  32. 32.
    Seeman, N. C., Rosenberg, J. M., & Rich, A. (1976). Sequence specific recognition of double helical nucleic acids by proteins. Proceedings of the National Academy of Sciences of the United States of America, 73, 804–808.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhu, L., Lukeman, P. S., Canary, J. W., & Seeman, N. C. (2003). Nylon/DNA: single-stranded DNA with a covalently stitched nylon lining. Journal of the American Chemical Society, 125, 10178–10179.PubMedCrossRefGoogle Scholar
  34. 34.
    Freier, S. M., & Altmann, K.-H. (1997). The ups and down of nucleic acid duplex stability. Nucleic Acids Research, 25, 4229–4243.CrossRefGoogle Scholar
  35. 35.
    Nielsen, P. E., Egholm, M., Berg, R. H., Buchardt, O. (1991). Sequence selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 254, 1497–1500.PubMedCrossRefGoogle Scholar
  36. 36.
    Lukeman, P. S., Mittal, A., & Seeman, N. C. (2004). Two dimensional PNA/DNA arrays: Estimating the helicity of unusual nucleic acid polymers. Chemical Communications, 2004, 1694–1695.CrossRefGoogle Scholar
  37. 37.
    Seeman, N., & Kallenbach, N. R. (1983). Design of immobile nucleic acid junctions. Biophysical Journal, 44, 201–209.PubMedGoogle Scholar
  38. 38.
    Seeman, N. C. (1990). De novo design of sequences for nucleic acid structure engineering. Journal of Biomolecular Structure & Dynamics, 8, 573–581.Google Scholar
  39. 39.
    Ma, R.-I., Kallenbach, N. R., Sheardy, R. D., Petrillo, M. L., & Seeman, N. C. (1986). Three arm nucleic acid junctions are flexible. Nucleic Acids Research, 14, 9745–9753.PubMedCrossRefGoogle Scholar
  40. 40.
    Kallenbach, N. R., Ma R. -I., & Seeman, N. C. (1983). An immobile nucleic acid junction constructed from oligonucleotides. Nature, 305, 829–831.CrossRefGoogle Scholar
  41. 41.
    Wang, Y., Mueller, J. E., Kemper, B., & Seeman, N. C. (1991). The assembly and characterization of 5-Arm and 6-Arm DNA junctions. Biochemistry, 30, 5667–5674.PubMedCrossRefGoogle Scholar
  42. 42.
    Wang, X., & Seeman, N. C. (2007). The assembly and characterization of 8-arm and 12-arm DNA branched junctions. Journal of the American Chemical Society (in press).Google Scholar
  43. 43.
    Petrillo, M. L., Newton, C. J., Cunningham, R. P., Ma, R.-I., Kallenbach, N. R., & Seeman N. C. (1988). Ligation and flexibility of four-arm DNA junctions. Biopolymers, 27, 1337–1352.PubMedCrossRefGoogle Scholar
  44. 44.
    Eis, P. S., & Millar D. P. (1993). Conformational distributions of a four-way DNA junction revealed by time-resolved fluorescence resonance energy transfer. Biochemistry, 32, 13852–13860.PubMedCrossRefGoogle Scholar
  45. 45.
    Chen, J., & Seeman, N. C. (1991). The electrophoretic properties of a DNA cube and its sub-structure catenanes. Electrophoresis, 12, 607–611.PubMedCrossRefGoogle Scholar
  46. 46.
    Seeman, N. C. (1992). The design of single-stranded nucleic acid knots. Molecular Engineering, 2, 297–307.CrossRefGoogle Scholar
  47. 47.
    Du, S. M., Stollar, B. D., & Seeman, N. C. (1995). A synthetic DNA molecule in three knotted topologies. Journal of the American Chemical Society, 117, 1194–200.CrossRefGoogle Scholar
  48. 48.
    Mao, C., Sun, W., & Seeman, N. C. (1997). Assembly of Borromean rings from DNA. Nature, 386, 137–138.PubMedCrossRefGoogle Scholar
  49. 49.
    Chichak, K. S., Cantrill, S. J., Pease, A. R., Chiu, S. H., Cave, G. W. V., Atwood, J. L., & Stoddart, J. F. (2004). Molecular Borromean rings. Science, 304, 1308–1312.PubMedCrossRefGoogle Scholar
  50. 50.
    Sa-Ardyen, P., Vologodskii, A. V., & Seeman, N. C. (2003). The flexibility of DNA double crossover molecules. Biophysical Journal, 84, 3829–3837.PubMedCrossRefGoogle Scholar
  51. 51.
    Winfree, E., Liu, F., Wenzler, L. A., Seeman, N. C. (1998). Design and self-assembly of two-dimensional DNA crystals. Nature, 394, 539–544.PubMedCrossRefGoogle Scholar
  52. 52.
    Liu, F., Sha, R., & Seeman, N. C. (1999). Modifying the surface features of two-dimensional DNA crystals. Journal of the American Chemical Society, 121, 917–922.CrossRefGoogle Scholar
  53. 53.
    Mao, C., Sun, W., & Seeman, N. C. (1999). Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. Journal of the American Chemical Society, 121, 5437–5443.CrossRefGoogle Scholar
  54. 54.
    Sha, R., Liu, F., Millar, D. P., & Seeman, N. C. (2000). Atomic force microscopy of parallel DNA branched junction arrays. Chemical Biology, 7, 743–751.CrossRefGoogle Scholar
  55. 55.
    Sha, R., Liu, F., & Seeman, N. C. (2002). Atomic force measurement of the interdomain angle in symmetric Holliday junctions. Biochemistry, 41, 5950–5955.PubMedCrossRefGoogle Scholar
  56. 56.
    Ding, B., & Seeman, N. C. (2004) Pseudohexagonal 2D DNA crystals from double crossover cohesion. Journal of the American Chemical Society, 126, 10230–10231.PubMedCrossRefGoogle Scholar
  57. 57.
    Xiao, S., Liu, F., Rosen, A., Hainfeld, J. F., Seeman, N. C., Musier-Forsyth, K. M., & Kiehl, R. A. (2002). Self-assembly of nanoparticle arrays by DNA scaffolding. Journal of Nanoparticle Research, 4, 313–317.CrossRefGoogle Scholar
  58. 58.
    Le, J. D., Pinto, Y., Seeman, N. C., Musier-Forsyth, K., Taton T. A., & Kiehl, R. A. (2004). Self-assembly of nanoelectronic component arrays by in situ hybridization to 2D DNA scaffolding. NanoLetters, 4, 2343–2347.Google Scholar
  59. 59.
    Pinto, Y. Y., Le, J. D., Seeman, N. C., Musier-Forsyth, K., Taton, T. A., & Kiehl, R. A. (2005). Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. NanoLetters, 5, 2399–2402.Google Scholar
  60. 60.
    Garibotti, A. V., Knudsen, S. M., Ellington, A. D., & Seeman, N. C. (2006). Functional DNAzymes organized into 2D arrays. NanoLetters, 6, 1505–1507.Google Scholar
  61. 61.
    Chhabra, R., Sharma, J., Liu, Y., & Yan, H. (2006). Addressable molecular tweezers for DNA-templated coupling reactions. NanoLetters, 6, 978–983.Google Scholar
  62. 62.
    Ding, B., & Seeman, N. C. (2006). Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science, 314, 1583–1585.PubMedCrossRefGoogle Scholar
  63. 63.
    Yang, X., Vologodskii, A. V., Liu, B., Kemper, B., & Seeman, N. C. (1998). Torsional control of double stranded DNA branch migration. Biopolymers, 45, 69–83.PubMedCrossRefGoogle Scholar
  64. 64.
    Rich, A., Nordheim, A., Wang, A. H.-J. (1984). The chemistry and biology of left-handed Z-DNA. Annual Review of Biochemistry, 53, 791–846.PubMedCrossRefGoogle Scholar
  65. 65.
    Mao, C., Sun, W., Shen, Z., & Seeman, N. C. (1999). A DNA nanomechanical device based on the B-Z transition. Nature, 397, 144–146.PubMedCrossRefGoogle Scholar
  66. 66.
    Yurke, B., Turberfield, A. J., Mills, A. P., Jr., Simmel, F. C., & Neumann, J. L. (2000). A DNA-fuelled molecular machine made of DNA. Nature, 406, 605–608.PubMedCrossRefGoogle Scholar
  67. 67.
    Sherman, W. B., & Seeman, N. C. (2004). A precisely controlled DNA bipedal walking device. NanoLetters, 4, 1203–1207.Google Scholar
  68. 68.
    Shin, J.-S., & Pierce, N. A. (2004). A synthetic DNA walker for molecular transport. Journal of the American Chemical Society, 126, 10834–10835.PubMedCrossRefGoogle Scholar
  69. 69.
    Tian, Y., He, Y., Chen, Y., Yin, P., & Mao, C. (2005). Molecular devices—A DNAzyme that walks processively and autonomously along a one-dimensional track. Angewandte Chemie (International ed. in English), 44, 4355–4358.CrossRefGoogle Scholar
  70. 70.
    Dittmer, W. U., & Simmel, F. C. (2004). Transcriptional control of DNA-based nanomachines. NanoLetters, 4, 689–691.Google Scholar
  71. 71.
    Seeman, N. C. (2005). From genes to machines: DNA nanomechanical devices. Trends in Biochemical Sciences, 30, 119–125.PubMedCrossRefGoogle Scholar
  72. 72.
    Bath, J., & Turberfield, A. J. (2007). DNA nanomachines. Nature Nanotechnology, 2, 276–284.CrossRefGoogle Scholar
  73. 73.
    Feng, L., Park, S. H., Reif, J. H., & Yan, H. (2003). A two-state DNA lattice switched by DNA nanoactuator. Angewandte Chemie (International ed. in English), 42, 4342–4346.CrossRefGoogle Scholar
  74. 74.
    Liao, S., & Seeman, N. C. (2004). Translation of DNA signals into polymer assembly instructions. Science, 306, 2072–2074.PubMedCrossRefGoogle Scholar
  75. 75.
    Adleman, L. (1994). Molecular computation of solutions to combinatorial problems. Science, 266, 1021–1024.PubMedCrossRefGoogle Scholar
  76. 76.
    Grünbaum, B., & Shephard, G. C. (1986) Tilings & patterns. New York: Freeman.Google Scholar
  77. 77.
    Mao, C., LaBean, T., Reif, J. H., & Seeman, N. C. (2000). Logical computation using algorithmic self-assembly of DNA triple crossover molecules. Nature, 407, 493–496.PubMedCrossRefGoogle Scholar
  78. 78.
    Rothemund, P. W. K., Papadakis, N., & Winfree, E. (2004). Algorithmic self-assembly of DNA Sierpinski triangles. PLOS Biology 2, 2041–2053.CrossRefGoogle Scholar
  79. 79.
    Barish, R. D., Rothemund, P. W. K., & Winfree, E. (2005). Two computational primitives for algorithmic assembly: Copying and counting. NanoLetters, 5, 2586–2592.Google Scholar
  80. 80.
    Winfree, E. (2000). Algorithmic self-assembly of DNA: Theoretical motivations and 2D assembly experiments. Journal of Biomolecular Structure & Dynamics Conversat. 11(2), 263–270.Google Scholar
  81. 81.
    Lin, C. X., Katilius, E., Liu, Y., Zhang, J. P., & Yan, H. (2006). Self-assembled signaling aptamer DNA arrays for protein detection. Angewandte Chemie (International ed. in English), 45, 5296–5301.CrossRefGoogle Scholar
  82. 82.
    Seeman N. C. (1991). The construction of 3-D stick figures from branched DNA. DNA and Cell Biology, 10, 475–486.PubMedGoogle Scholar
  83. 83.
    Eckardt, H. E., Naumann, K., Pankau, W. M., Rein, M., Schweitzer, M., Windhab, N., & von Kiedrowski, G. (2002). Chemical copying of connectivity. Nature, 420, 286.PubMedCrossRefGoogle Scholar
  84. 84.
    Rothemund, P. W.K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440, 297–302.PubMedCrossRefGoogle Scholar
  85. 85.
    Yan, H., LaBean, T. H., Feng, L., & Reif, J. H. (2003). Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proceedings of the National Academy of Sciences, 100, 8103–8108.CrossRefGoogle Scholar
  86. 86.
    Douglas, S. M., Chou, J. J., & Shih, W. M. (2007). DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proceedings of the National Academy of Sciences of the United States of America, 104, 6644–6648.PubMedCrossRefGoogle Scholar
  87. 87.
    Mao, C. Constantinou, P. E., Liu, F., Pinto, Y., Kopatsch, J, Lukeman, P. S., Wang, T., Ding, B., Yan, H., Birktoft, J. J., Sha, R., Zhong, H., Foley, L., Wenzler, L. A., Sweet, R., Becker, M. & Seeman, N. C. (2005). The design of self-assembled 3D DNA networks. In M. Cahay, M. Urquidi-Macdonald, S. Bandyopadhyay, P. Guo, H. Hasegawa, N. Koshida, J. P. Leburton, D. J., Lockwood, S. Seal, & A. Stella (Eds.), Proceedings of the International Symposium on the Nanoscale Devices, Materials, and Biological Systems, 206th Meeting of the Electrochemical Society, PV 2004-XX (Vol. 13, pp. 509–520). Honolulu.Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations