Advertisement

Molecular Biotechnology

, Volume 37, Issue 1, pp 5–12 | Cite as

The Important Role of Lipid Peroxidation Processes in Aging and Age Dependent Diseases

  • Gerhard Spiteller
Review

Abstract

Any change in the cell membrane structure activates lipoxygenases (LOX). LOX transform polyunsaturated fatty acids (PUFAs) to lipidhydroperoxide molecules (LOOHs). When cells are severely wounded, this physiological process switches to a non-enzymatic lipid peroxidation (LPO) process producing LOO· radicals. These oxidize nearly all-biological molecules such as lipids, sugars, and proteins. The LOO· induced degradations proceed by transfer of the radicals from cell to cell like an infection. The chemical reactions induced by LO· and LOO· radicals seem to be responsible for aging and induction of age dependent diseases.

Alternatively, LO· and LOO· radicals are generated by frying of fats and involve cholesterol-PUFA esters and thus induce atherogenesis.

Plants and algae are exposed to LOO· radicals generating radiation. In order to remove LOO· radicals, plants and algae transform PUFAs to furan fatty acids, which are incorporated after consumption of vegetables into mammalian tissues where they act as excellent scavengers of LOO· and LO· radicals.

Keywords

Lipid peroxidation Peroxyl radicals Furan fatty acids Radical scavengers Atherosclerosis Alzheimer´s disease Aging 

Notes

Acknowledgment

I am deeply indebted to my former collaborators, partly cited in the references, for their contributions. I am also obliged to Deutsche Forschungsgemeinschaft, Fonds der Chemischen Industrie, Schering AG, Henkel KG and Fischer Stiftung for financial support.

References

  1. 1.
    Spiteller, M., Spiteller, G., & Hoyer, G. A. (1980). Urofuransäuren – eine bisher unbekannte Klasse von Stoffwechselprodukten. Chemishe Berichte, 113, 699–709.CrossRefGoogle Scholar
  2. 2.
    Glass, R. L., Krick, T. P., Sand, D. M., Rahn, C. H., & Schlenk, H. (1975). Furanoid fatty acids from fish lipids. Lipids, 10, 695–702.PubMedCrossRefGoogle Scholar
  3. 3.
    Batna, A., Scheinkönig, J., & Spiteller, G. (1993). The occurrence of furan fatty acids in Isochrysis sp. and Phaeodactylum tricornutum. Biochimica et Biophysica Acta, 1166, 171–176.PubMedGoogle Scholar
  4. 4.
    Hannemann, K., Puchta, V., Simon, E., Ziegler, H., Ziegler, G., & Spiteller, G. (1989). The common occurrence of furan fatty acids in plants. Lipids, 24, 296–298.PubMedCrossRefGoogle Scholar
  5. 5.
    Puchta, V., & Spiteller G. (1988). Structure of F-acids-containing plasma lipids. Liebigs Annalen de Chemie, 1145–1147.Google Scholar
  6. 6.
    Schödel, R., & Spiteller G. (1987). Über das Vorkommen von F-Säuren in Rinderleber und deren enzymatischen Abbau bei Gewebeverletzung. Liebigs Annalen de Chemie, 459–462.Google Scholar
  7. 7.
    Boyer, R. F., Litts, D., Kostishak, J., Wijsundera, R. C., & Gunstone, F. D. (1979). The action of lipoxygenase-1 on furan derivatives. Chemistry and Physics of Lipids, 25, 237–246.PubMedCrossRefGoogle Scholar
  8. 8.
    Batna, A., & Spiteller G. (1994). Oxidation of furan fatty acids by soybean lipoxygenase-1 in the presence of linoleic acid. Chemistry and Physics of Lipids, 70, 179–185.PubMedCrossRefGoogle Scholar
  9. 9.
    Frankel, E. N. (2005). Lipid oxidation (2nd ed., pp. 15–98). Bridgewater, England: The Oily Press.Google Scholar
  10. 10.
    Gardner, H. W. (1989). Oxygen radical chemistry of polyunsaturated fatty acids. Free Radical Biology and Medicine, 7, 65–86.PubMedCrossRefGoogle Scholar
  11. 11.
    Galliard, T. (1975). Degradation of plant lipids by hydrolytic and oxidative enzymes. Annu Proc. Phytochem. Soc.,12, 319–357.Google Scholar
  12. 12.
    De Groot, J. J. M. C., Veldink, G. A., Vliegenthart, J. F. G., Boldingh, J., Wever, R.., & Van Gelder, B. F. (1975). Demonstration by EPR spectroscopy of the functional role of iron in soybean lipoxygenase-1. Biochimica et Biophysica Acta, 377, 71–79.PubMedGoogle Scholar
  13. 13.
    Szatmari, I., Rajnavolgyi, E., & Nagy, L. (2006). PPARγ, a lipid activated transcription factor as a regulator of dendrite cell function. Annals New York Academy of Sciences 1088 (Neuroendocrine and Immune Crosstalk) 207–218.Google Scholar
  14. 14.
    Spiteller, G. (2006). Peroxyl radicals: Inductors of neurodegenerative and other inflammatory diseases. Their origin and how they transform cholesterol, phospholipids, plasmalogens, polyunsaturated fatty acids, sugars and proteins into deleterious products. Free Radical Biology and Medicine, 41, 362–387.PubMedCrossRefGoogle Scholar
  15. 15.
    Spiteller, P., Kern, W., Reiner, J., & Spiteller, G. (2001). Aldehydic lipoxidation products derived from linoleic acid. Biochimica et Biophysica Acta, 1531, 188–208.PubMedGoogle Scholar
  16. 16.
    Spiteller, G., Spiteller, D., Jira, W., Kießling, U., Dudda, A., Weisser, M., Hecht, S., & Schwarz, C. (2000). Age and age-dependent diseases, a consequence of lipid peroxidation? In W. Adam (Ed.), Peroxide chemistry. Mechanisms and preparative aspects (pp.179–208). Weinheim: Wiley-VCH.Google Scholar
  17. 17.
    Dix, T. A., & Marnett, L. J. (1981). Free radical epoxidation of 7,8-dihydroxy-7,8-dihydrobenzo[a] pyrene by hematin and polyunsaturated fatty acid hydroperoxides. Journal of the American Chemical Society, 103, 6744–6746.CrossRefGoogle Scholar
  18. 18.
    Meyer, W., & Spiteller G. (1997). Oxidized phytosterols increase by ageing in photoautotrophic cell cultures of Chenopodium rubrum. Phytochemistry, 45, 297–302.CrossRefGoogle Scholar
  19. 19.
    Meyer, W., & Spiteller, G. (1996). Increase of caryophyllene oxide in ageing lemon balm leaves (Melissa officinalis L.)––a conseqence of lipid peroxidation? Zeitschrift fur Naturforschung, 51c, 651–656.Google Scholar
  20. 20.
    Weisser, M., & Spiteller, G. (1996). Increase of aldehydic compounds derived from plasmalogens in the brain of aged cattle. Lipids, 82, 173–178.CrossRefGoogle Scholar
  21. 21.
    Von Sonntag, C. (1980). Free-radical reactions of carbohydrates as studied by radiation techniques. Advances in Carbohydrate Chemistry and Biochemistry, 37, 7–77.CrossRefGoogle Scholar
  22. 22.
    Ahmed, M. U., Thorpe, S. R., & Baynes, J. W. (1986). Identification of Nε-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. Journal of Biological Chemistry, 261, 4889–4894.PubMedGoogle Scholar
  23. 23.
    Richardson, D. E., Regino, C. A. S., Yao, H., & Johnson, J. V. (2003). Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide. Free Radical Biology and Medicine, 35, 1538–1550.PubMedCrossRefGoogle Scholar
  24. 24.
    Weber, L. W., Boll, M., & Stampfl, A. (2003). Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Critical Reviews in Toxicology, 33, 105–136.PubMedCrossRefGoogle Scholar
  25. 25.
    Frenette, P. S., Johnson, R. C., Hynes, R. G., & Wagner, D. D. (1995). Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proceediings of National Academy of Sciences of the United States of America, 92, 7450–7454.CrossRefGoogle Scholar
  26. 26.
    Greenberg, J. T. (1997). Programmed cell death in plant-pathogen interaction. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 525–545.PubMedCrossRefGoogle Scholar
  27. 27.
    Ross, R., & Glomset J. A. (1973). Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of lesions of atherosclerosis. Science, 180, 1332–1339.PubMedCrossRefGoogle Scholar
  28. 28.
    De Lorgeril, M., Richard, M. J., Arnaud, J., Boissonnat, P., Guidollet, J., Dureau, G., Renaud, S., & Favier, A. (1993). Lipid peroxides and antioxidant defenses in accelerated transplantation-associated coronary arteriosclerosis. American Heart Journal, 125, 974–980.PubMedCrossRefGoogle Scholar
  29. 29.
    Janero, D. R. (1990). Malondialdehyde and thiobarbituric acid––reactivity as diagnostic indexes of lipid peroxidation and peroxidative tissue injury. Free Radical Biology and Medicine, 9, 515–540.PubMedCrossRefGoogle Scholar
  30. 30.
    Milne, G. L., & Morrow, J. D.(2006). Isoprostanes, and related compounds: Update 2006. Antioxid. Redox Signal., 8, 1379–1384 (2006).Google Scholar
  31. 31.
    Spiteller, P., & Spiteller, G. (1997). 9-Hydroxy-10,12-octadecadienoic acid (9-HODE) and 13-hydroxy-9,11-octadecadienoic acid (13-HODE): Excellent markers for lipid peroxidation. Chemistry and Physics of Lipids, 89, 131–139.CrossRefGoogle Scholar
  32. 32.
    Yoshida, Y., & Niki, E. (2006). Bio-markers of lipid peroxidation in vivo: Hydroxyoctaecadienoc acid and hydroxycholesterol. BioFactors, 27, 195–202.PubMedGoogle Scholar
  33. 33.
    Youhnovski, N., Schulz, D., Schwarz, C., Spiteller, G., & Schubert, K. (2003). Determination of hyroxyoctadecadienoic acids Zeitschrift fur Naturforschung, 58c, 268–276.Google Scholar
  34. 34.
    Jira, W., & Spiteller, G. (1998). Strong increase in hydroxyl fatty acids derived from linoleic acid in human low density lipoproteins of atherosclerotic patients. Chemistry and Physics of Lipids, 86, 1–11.CrossRefGoogle Scholar
  35. 35.
    Jira, W., Spiteller, G., & Schramm, A. (1996). Increase in hydroxy fatty acids in human low density lipoproteins with age. Chemistry and Physics of Lipids, 84, 165–173.PubMedCrossRefGoogle Scholar
  36. 36.
    Grundy S. M. (2001). United States cholesterol guidelines 2001: Expanded scope of intensive low-density lipoprotein-lowering therapy. American Journal of Cardiology, 88, 22J–27J.Google Scholar
  37. 37.
    Goldstein, J. L., & Brown, M. S. (1977). The low density lipoprotein pathway and ist relation to atherosclerosis. Annual Review of Biochemistry, 46, 897–930.PubMedCrossRefGoogle Scholar
  38. 38.
    Suzuki, M., Yamamoto, D., Suzuki, T., Fujii, M., Suzuki, N., Fujishiro, M., Sakurai, T, & Yamada, K. (2006). High fat and high fructose diet induced intracranial atherosclerosis and enhanced vasoconstrictor responses in non-human primate. Life Science, 80, 200–204.CrossRefGoogle Scholar
  39. 39.
    Spiteller, G. (2005). The relation of peroxidation processes with atherogenesis: A new theory on atherogenesis. Mol. Nutr. Food Res., 49, 999–1013.PubMedCrossRefGoogle Scholar
  40. 40.
    Leonarduzzi, G., Sottero, B., Verde, V., & Poli, G. (2005). Oxidized products of cholesterol: Toxic effects Rev. Food and Nutrition Toxicity, 3, 129–164.Google Scholar
  41. 41.
    Bang, H.O., & Dyerberg, J. (1980). Lipid Metabolism and ischemic heart disease in Greenland eskimos. Advances in Nutritional Research, 3, 1–22.Google Scholar
  42. 42.
    Leaf, A., & Weber, P. C. (1988). Medical progress: Cardio vascular effects of n-3 fatty acids. New England Journal of Medicine, 318, 549–557.PubMedCrossRefGoogle Scholar
  43. 43.
    Davis, T. A., Gao, L., Yin, H., Morrow, J. D., & Porter, N. A. (2006). In vivo and in vitro lipid peroxidation of arachidonate esters: The effect of fish oil ω-3 lipids on product distribution. Journal American Chemical Society, 128, 14897–14904.CrossRefGoogle Scholar
  44. 44.
    Spiteller G. (2005). Furan fatty acids: occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids, 40, 755–771.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Organic Chemical DepartmentUniversity of BayreuthBayreuthGermany

Personalised recommendations