Bioenergetic and Antioxidant Properties of Coenzyme Q10: Recent Developments


For a number of years, coenzyme Q (CoQ10 in humans) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in plasma, and extensively investigated its antioxidant role. These two functions constitute the basis on which research supporting the clinical use of CoQ10 is founded. Also at the inner mitochondrial membrane level, coenzyme Q is recognized as an obligatory co-factor for the function of uncoupling proteins and a modulator of the transition pore. Furthermore, recent data reveal that CoQ10 affects expression of genes involved in human cell signalling, metabolism, and transport and some of the effects of exogenously administered CoQ10 may be due to this property. Coenzyme Q is the only lipid soluble antioxidant synthesized endogenously. In its reduced form, CoQH2, ubiquinol, inhibits protein and DNA oxidation but it is the effect on lipid peroxidation that has been most deeply studied. Ubiquinol inhibits the peroxidation of cell membrane lipids and also that of lipoprotein lipids present in the circulation. Dietary supplementation with CoQ10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoproteins to the initiation of lipid peroxidation. Moreover, CoQ10 has a direct anti-atherogenic effect, which has been demonstrated in apolipoprotein E-deficient mice fed with a high-fat diet. In this model, supplementation with CoQ10 at pharmacological doses was capable of decreasing the absolute concentration of lipid hydroperoxides in atherosclerotic lesions and of minimizing the size of atherosclerotic lesions in the whole aorta. Whether these protective effects are only due to the antioxidant properties of coenzyme Q remains to be established; recent data point out that CoQ10 could have a direct effect on endothelial function. In patients with stable moderate CHF, oral CoQ10 supplementation was shown to ameliorate cardiac contractility and endothelial dysfunction. Recent data from our laboratory showed a strong correlation between endothelium bound extra cellular SOD (ecSOD) and flow-dependent endothelial-mediated dilation, a functional parameter commonly used as a biomarker of vascular function. The study also highlighted that supplementation with CoQ10 that significantly affects endothelium-bound ecSOD activity. Furthermore, we showed a significant correlation between increase in endothelial bound ecSOD activity and improvement in FMD after CoQ10 supplementation. The effect was more pronounced in patients with low basal values of ecSOD. Finally, we summarize the findings, also from our laboratory, on the implications of CoQ10 in seminal fluid integrity and sperm cell motility.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 695

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    Dallner, G., & Stocker, R. (2005). Coenzyme Q. In Encyclopedia of dietary supplements (pp. 121–131). New York: Marcel Dekker.

  2. 2.

    Groneberg, D. A., Kindermann, B., Althammer, M., Klapper M., Vormann J., Littarru G. P., & Doring F. (2005). Coenzyme Q10 affects expression of genes involved in cell signalling, metabolism and transport in human CaCo-2 cells. International Journal of Biochemistry & Cell Biology, 37, 1208–1218.

  3. 3.

    Green, D. E., & Tzagoloff, A. (1966). The mitochondrial electron transfer chain. Archives of Biochemistry and Biophysics, 116, 293–304.

  4. 4.

    Kröger, A., & Klingenberg, M. (1973). The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. European Journal of Biochemistry, 34, 358–368.

  5. 5.

    Estornell, E., Fato, R., Castelluccio, C., Cavazzoni, M., Parenti Castelli, G., & Lenaz, G. (1992). Saturation kinetics of coenzyme Q in NADH and succinate oxidation in beef heart mitochondria. FEBS Letters, 311, 107–111.

  6. 6.

    Naini, A., Lewis, V.-J., Hirano, M., & DiMauro, S. (2003). Primary coenzyme Q10 deficiency. BioFactors, 18, 145–152.

  7. 7.

    Mortensen, S. A. (2003). Overview on coenzyme Q10 as adjunctive therapy in chronic heart failure. Rationale, design and end-points of “Q-Symbio” – a multinational trial. BioFactors, 18, 79–89.

  8. 8.

    Genova, M. L., Bianchi, C., & Lenaz, G. (2005). Supercomplex organization of the mitochondrial respiratory chain and the role of the coenzyme Q pool: pathophysiological implications. BioFactors, 25, 5–20.

  9. 9.

    Stocker, R., Bowry, V. W., & Frei, B. (1991). Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does α-tocopherol. Proceedings of the National Academy of Sciences of the USA, 88, 1646–1650.

  10. 10.

    Mohr, D., Bowry, V. W., & Stocker, R. (1992). Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochimica et Biophysica Acta, 1126, 247–254.

  11. 11.

    Alleva, R., Tomasetti, M., Battino, M., Curatola, G., Littarru, G. P., & Folkers, K. (1995). The roles of coenzyme Q10 and vitamin E on the peroxidation of human low density lipoprotein subfractions. Proceedings of the National Academy of Sciences of the USA, 92, 9388–9391.

  12. 12.

    Witting, K., Pettersson, K., Letters, J., & Stocker, R. (2000). Anti-atherogenic effect of coenzyme Q10 in apolipoprotein E gene knockout mice. Free Radical Biology & Medicine, 29, 295–300.

  13. 13.

    Digiesi, V., Cantini, F., Oradei, A., Bisi, G., Guarino, G. C., Brocchi, A., Bellandi, F., Mancini, M., & Littarru, G. P. (1994). Coenzyme Q10 in essential hypertension. Molecular Aspects of Medicine, 15, 257–263.

  14. 14.

    Watts, G. F., Playford, D. A., Croft, K. D., Ward, N. C., Mori, T. A., & Burke, V. (2002). Coenzyme Q(10) improves endothelial dysfunction of the brachial artery in Type II diabetes mellitus. Diabetologia, 45, 420–426.

  15. 15.

    Belardinelli, R., Mucaj, A., Lacalaprice, F., Solenghi, M., Seddaiu, G., Principi, F., Tiano, L., & Littarru, G. P. (2006). Coenzyme Q10 and exercise training in chronic heart failure. European Heart Journal, 27, 2675–2681.

  16. 16.

    Atar, D., Mortensen, S. A., Flachs, H., Herzog, W. R. (1993). Coenzyme Q10 protects ischemic myocardium in an open-chest swine model. Clinical Investigator, 71, 103–111.

  17. 17.

    Nayler, W. G. (1980). The use of coenzyme Q10 to protect ischaemic heart muscle. In Y. Yamamura, K. Folkers, & Y. Ito (eds.), Biomedical and clinical aspects of coenzyme Q (Vol. 2, pp. 409–424). Amsterdam: Elsevier.

  18. 18.

    Kwong, L. K., Kamzalov, S., Rebrin, I., Bayne, A. C., Jana, C. K., Morris, P., Forster, M. J., & Sohal, R. S. (2002). Effects of coenzyme Q10 administration on its tissue concentrations, mitochondrial oxidant generation, and oxidative stress in the rat. Free Radical Biology & Medicine, 33, 627–638.

  19. 19.

    Sohal, R. S., Kamzalov, S., Sumien, N., Ferguson, M., Rebrin, I., Heinrich, K. R., & Forster, M. J. (2006). Effect of coenzyme Q10 intake on endogenous coenzyme Q content, mitochondrial electron transport chain, antioxidative defenses, and life span of mice. Free Radical Biology & Medicine, 40, 480–487.

  20. 20.

    Rosenfeldt, F. L., Pepe, S., Ou, R., Mariani, J. A., Rowland, M. A., Nagley, P., & Ninnane, A. W. (1999). Coenzyme Q10 improves the tolerance of the senescent myocardium to aerobic and ischemic stress: studies in rats and in human atrial tissue. BioFactors, 9, 291–299.

  21. 21.

    Rosenfeldt, F. L., Marasco, S., Lyon, W., Wowk, M., Sheeran, F., Bailey, M., Esmore, D., Davis, B., Pick, A., Rabinov, M., Smith, J., Nagley, P., & Pepe, S. (2005). Coenzyme Q10 therapy before cardiac surgery improves mitochondrial function and in vivo contractility of myocardial tissue. Journal of Thoracic and Cardiovascular Surgery, 129, 25–32.

  22. 22.

    Marriage, B., Clandinin, M. T., Macdonald, I. M., & Glerum, M. (2004). Cofactor treatment improves ATP synthetic capacity in patients with oxidative phosphorylation disorders. Molecular Genetics and Metabolism, 81, 263–272.

  23. 23.

    Langsjoen, P. H., & Langsjoen, A. M. (2003). The clinical use of HMG CoA-reductase inhibitors and the associated depletion of coenzyme Q10. A review of animal and human publications. Biofactors, 18, 101–111.

  24. 24.

    Päivä, H., Thelen, K. M., Van Coster, R., Smet, J., De Paepe, B., Mattila, K. M., Laakso, J., Lehtimaki, T., von Bergmann, K., Lutjohann, D., & Laaksonen, R. (2005). High-dose statins and skeletal muscle metabolism in humans: a randomozed ontrolled trial. Clinical Pharmacology and Therapeutics, 78, 60–68.

  25. 25.

    Tiano, T., Belardinelli, R., Carnevali, P., Principi, F., Seddau, G., & Littarru, G. P. (2007). Effect of Coenzyme Q10 administration on endothelial function and extracellular superoxide dismutase in patients with ischemic heart disease. A double blind randomized controlled study. In process of being published in European Heart Journal. Manuscript Draft Number: EURHEARTJ-D-06-01411R1.

  26. 26.

    Fukai, T., Folz, R. J., Landmesser, U., & Harrison, G. D. (2002). Extracellular superoxide dismutase and cardiovascular disease. Cardiovascular Research, 55, 239–249.

  27. 27.

    Mordente, A., Martorana, G. E., Santini, S. A., Miggiano, G. A., Petitti, T., Giardina, B., Battino, M., & Littarru, G. P. (1993). Antioxidant effect of Coenzyme Q on hydrogen peroxide activated myoglobin. Clinical Investigator, 71, 92-96.

  28. 28.

    Tomasetti, M., Littarru, G. P., Stocker, R., & Alleva, R. (1999). Coenzyme Q10 enrichment decreases oxidative DNA damage in human lymphocytes. Free Radical Biology & Medicine, 27, 1027–1032.

  29. 29.

    Tomasetti, M., Alleva, R., Borghi, B., & Collins, A. (2001). In vivo supplementation with coenzyme Q10 enhances the recovery of human lymphocytes from oxidative DNA damage. FASEB, 15, 1425–1427.

  30. 30.

    Tiano, L., Littarru, G. P., Principi, F., Orlandi, M., Santoro, L., Carnevali, P., & Gabrielli, O. (2005). Assessment of DNA damage in Down Syndrome patients by means of a new, optimised single cell gel electrophoresis technique. BioFactors, 25, 187–196.

  31. 31.

    Mancini, A., De Marinis, L., Oradei, A., Hallgass, M. E., Conte, G., Pozza, D., & Littarru, G. P. (1994). Coenzyme Q10 concentrations in normal and pathological human seminal fluid. Journal of Andrology, 15, 591–594.

  32. 32.

    Alleva, R., Scaramucci, A., Mantero, F., Bompadre, S., Leoni, L., & Littarru, G. P. (1997). The protective role of ubiquinol-10 against formation of lipid hydroperoxides in human seminal fluid. Molecular Aspects of Medicine, 18, 221–228.

  33. 33.

    Lewin, A., & Lavon, H. (1997). The effect of Coenzyme Q10 on sperm motility and function. Molecular Aspects of Medicine, 18, 213–219.

  34. 34.

    Balercia, G., Mosca, F., Mantero, F., Boscaro, M., Mancini, A., Lamonica, G. R., & Littarru, G. P. (2004). Coenzyme Q(10) supplementation in infertile men with idiopathic asthenozoospermia: an open, uncontrolled pilot study. Fertility and Sterility, 8, 193–198.

  35. 35.

    Balercia, G., Araldi, G., Fagioli, F., Serresi, M., Alleva, R., Mancini, A., Mosca, F., Lamonica, G. R., Mantero, F., & Littarru, G. P. (2002). Coenzyme Q10 levels in idiopathic and varicocele-associated asthenozoospermia. Andrologia, 34, 107–111.

Download references

Author information

Correspondence to Gian Paolo Littarru.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Littarru, G.P., Tiano, L. Bioenergetic and Antioxidant Properties of Coenzyme Q10: Recent Developments. Mol Biotechnol 37, 31–37 (2007) doi:10.1007/s12033-007-0052-y

Download citation


  • Coenzyme Q10
  • Mitochondrial bioenergetics
  • Cardiac contractility
  • Endothelial function
  • Lipoprotein peroxidation
  • Sperm cell motility