Advertisement

Molecular Biotechnology

, Volume 37, Issue 2, pp 169–180 | Cite as

History of plant tissue culture

  • Trevor A. Thorpe
Original Paper

Abstract

Plant tissue culture, or the aseptic culture of cells, tissues, organs, and their components under defined physical and chemical conditions in vitro, is an important tool in both basic and applied studies as well as in commercial application. It owes its origin to the ideas of the German scientist, Haberlandt, at the begining of the 20th century. The early studies led to root cultures, embryo cultures, and the first true callus/tissue cultures. The period between the 1940s and the 1960s was marked by the development of new techniques and the improvement of those that were already in use. It was the availability of these techniques that led to the application of tissue culture to five broad areas, namely, cell behavior (including cytology, nutrition, metabolism, morphogenesis, embryogenesis, and pathology), plant modification and improvement, pathogen-free plants and germplasm storage, clonal propagation, and product (mainly secondary metabolite) formation, starting in the mid-1960s. The 1990s saw continued expansion in the application of the in vitro technologies to an increasing number of plant species. Cell cultures have remained an important tool in the study of basic areas of plant biology and biochemistry and have assumed major significance in studies in molecular biology and agricultural biotechnology. The historical development of these in vitro technologies and their applications are the focus of this chapter.

Keywords

Cell behavior Cell suspensions Clonal propagation Organogenesis Plantlet regeneration Plant transformation Protoplasts Somatic embryogenesis Vector-dependent/independent gene transfer 

References

  1. 1.
    Thorpe, T. A. (1990). The current status of plant tissue culture. In S. S. Bhojwani (Ed.), Plant tissue culture: Applications and limitations (pp. 1–33). Amsterdam: Elsevier.Google Scholar
  2. 2.
    Haberlandt, G. (1902). Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber. Akad. Wiss. Wien. Math.-Naturwiss. Kl., Abt. J, 111, 69–92.Google Scholar
  3. 3.
    Krikorian, A. D., & Berquam, D. L. (1969). Plant cell and tissue cultures: the role of Haberlandt. Botanical Review, 35, 59–67.Google Scholar
  4. 4.
    Kotte, W. (1922). Kulturversuche mit isolierten Wurzelspitzen. Beiträge Allgemeine Botanik, 2, 413–434.Google Scholar
  5. 5.
    Robbins, W. J. (1922). Cultivation of excised root tips and stem tips under sterile conditions. Botanical Gazette, 73, 376–390.CrossRefGoogle Scholar
  6. 6.
    White, P. R. (1934). Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiology, 9, 585–600.PubMedGoogle Scholar
  7. 7.
    Street, H. E. (1969). Growth in organized and unorganized systems. In F. C. Steward (Ed.), Plant physiology (Vol. 5B, pp. 3–224). New York: Academic Press.Google Scholar
  8. 8.
    Loo, S. W. (1945). Cultivation of excised stem tips of asparagus in vitro. American Journal of Botany, 32, 13–17.CrossRefGoogle Scholar
  9. 9.
    Ball, E. (1946). Development in sterile culture of stems tips and subjacent regions of Tropaeolum malus L. and of Lupinus albus L. American Journal of Botany, 33, 301–318.CrossRefGoogle Scholar
  10. 10.
    Monnier, M. (1995). Culture of zygotic embryos. In T. A. Thorpe (Ed.), In Vitro embryogenesis in plants (pp. 117–153). Dordrecht, The Netherlands: Kluwer Academic.Google Scholar
  11. 11.
    Laibach, F. (1929). Ectogenesis in plants. Methods and genetic possibilities of propagating embryos otherwise dying in the seed. The Journal of Heredity, 20, 201–208.Google Scholar
  12. 12.
    Tukey, H. B. (1934). Artificial culture methods for isolated embryos of deciduous fruits. Proceedings of the American Society for Horticultural Science, 32, 313–322.Google Scholar
  13. 13.
    LaRue, C. D. (1936). The growth of plant embryos in culture. Bulletin of Torrey Botanical Club, 63, 365–382.CrossRefGoogle Scholar
  14. 14.
    Gautheret, R. J. (1934). Culture du tissus cambial. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 198, 2195–2196.Google Scholar
  15. 15.
    Gautheret, R. J. (1935). Recherches sur la culture des tissus végétaux. Ph.D. Thesis, Paris.Google Scholar
  16. 16.
    Gautheret, R. J. (1939). Sur la possibilité de réaliser la culture indéfinie des tissus de tubercules de carotte. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 208, 118–120.Google Scholar
  17. 17.
    Nobécourt, P. (1939). Sur la pérennité et l’augmentation de volume des cultures de tissues végétaux. Comptes Rendus des Séances de la Société de Biologie et de ses Filiales, 130, 1270–1271.Google Scholar
  18. 18.
    White, P. R. (1939). Potentially unlimited growth of excised plant callus in an artificial nutrient. American Journal of Botany, 26, 59–64.CrossRefGoogle Scholar
  19. 19.
    Nobécourt, P. (1939). Sur les radicelles naissant des cultures de tissus végétaux. Comptes Rendus Des Séances de la Société de Biologie et de ses Filiales, 130, 1271–1272.Google Scholar
  20. 20.
    White, P. R. (1939). Controlled differentiation in a plant tissue culture. Bulletin of Torrey Botanical Club, 66, 507–513.CrossRefGoogle Scholar
  21. 21.
    White, P. R. (1963). The cultivation of animal and plant cells (2nd ed.). New York: Ronald Press.Google Scholar
  22. 22.
    Bhojwani, S. S., & Razdan, M. K. (1983). Plant tissue culture: Theory and practice. developments in crop science, (Vol. 5). Amsterdam: Elsevier.Google Scholar
  23. 23.
    Gautheret, R. J. (1985). History of plant tissue and cell culture: A personal account. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics of plants (Vol. 2, pp. 1–59). New York: Academic Press.Google Scholar
  24. 24.
    Thorpe, T. A. (2000). History of plant cell culture. Chap. 1. In R. H. Smith (Ed.), Plant tissue culture: Techniques and Experiments (2nd ed., pp. 1–32). California: Academic Press, (With permission from Elsevier).Google Scholar
  25. 25.
    Van Overbeek, J., Conklin, M. E., & Blakeslee, A. F. (1941). Factors in coconut milk essential for growth and development of very young Datura embryos. Science, 94, 350–351.CrossRefGoogle Scholar
  26. 26.
    Gautheret, R. J. (1942). Hétéro-auxines et cultures de tissus végétaux. Bulletin de la Société de Chimie Biologique, 24, 13–41.Google Scholar
  27. 27.
    Gautheret, R. J. (1955). Sur la variabilité des propriétés physiologiques des cultures de tissues végétaux. Revista General de Botânica, 62, 5–112.Google Scholar
  28. 28.
    Nobécourt, P. (1955). Variations de la morphologie et de la structure de cultures de tissues végétaux. Berichte der Schweizerische Botanischen Gesellschaft, 65, 475–480.Google Scholar
  29. 29.
    Skoog, F., & Tsui, C. (1948). Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. American Journal of Botany, 35, 782–787.CrossRefGoogle Scholar
  30. 30.
    Miller, C., Skoog, F., Von Saltza, M. H., & Strong, F. M. (1955). Kinetin, a cell division factorfrom desoxyribonucleic acid. Journal of the American Chemical Society, 77, 1392.CrossRefGoogle Scholar
  31. 31.
    Skoog, F., & Miller, C. O. (1957). Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symposia of the Society for Experimental Biology, 11, 118–131.Google Scholar
  32. 32.
    Evans, D. A., Sharp, W. R., & Flick, C. E. (1981). Growth and behavior of cell cultures: Embryogenesis and organogenesis. In T. A. Thorpe (Ed.), Plant tissue culture: Methods and applications in agriculture (pp. 45–113). New York: Academic Press.Google Scholar
  33. 33.
    Letham, D. S. (1974). Regulators of cell division in plant tissues. The cytokinins of coconut milk. Physiologia Plantarum, 32, 66–70.CrossRefGoogle Scholar
  34. 34.
    Reinert, J. (1958). Utersuchungen die Morphogenese an Gewebeku1turen. Berichte der Deutschen Botanischen Gesellschaft, 71, 15.Google Scholar
  35. 35.
    Reinert, J. (1959). Uber die Kontrolle der Morphogenese und die Induktion von Adventivembryonen an Gewebekulturen aus Karotten. Planta, 53, 318–333.CrossRefGoogle Scholar
  36. 36.
    Steward, F. C., Mapes, M. O., & Mears, K. (1958). Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. American Journal of Botany, 45, 705–708.CrossRefGoogle Scholar
  37. 37.
    Muir, W.H., Hildebrandt, A.C., & Riker, A.J. (1954). Plant tissue cultures produced from single isolated plant cells. Science, 119, 877–878.CrossRefGoogle Scholar
  38. 38.
    Muir, W. H., Hildebrandt, A. C., & Riker, A. J. (1958). The preparation, isolation and growth in culture of single cells from higher plants. American Journal of Botany, 45, 585–597.CrossRefGoogle Scholar
  39. 39.
    Jones, L. E., Hildebrandt, A. C., Riker, A. J., & Wu, J. H. (1960). Growth of somatic tobacco cells in microculture. American Journal of Botany, 47, 468–475.CrossRefGoogle Scholar
  40. 40.
    Bergmann, L. (1959). A new technique for isolating and cloning cells of higher piarits. Nature, 184, 648–649.CrossRefGoogle Scholar
  41. 41.
    Kohlenbach, H. W. (1959). Streckungs-und Teilungswachstum isolierter Mesophyllzellen von Macleaya cordata (Wild.) R. Br. Naturwissenschaften, 46, 116–117.CrossRefGoogle Scholar
  42. 42.
    Kohlenbach, H. W. (1966). Die Entwicklungspotenzen explantierter und isolierter Dauerzellen. I. Das Strechungs-und Teilungswachstum isolierter Mesophyllzellen von Macleaya cordata. Zeitschrift für Pflanzenphysiologie, 55, 142–157.Google Scholar
  43. 43.
    Tulecke, W., & Nickell, L. G. (1959). Production of large amounts of plant tissue by submerged culture. Science, 130, 863–864.PubMedCrossRefGoogle Scholar
  44. 44.
    Vasil, V., & Hildebrandt, A. C. (1965). Differentiation of tobacco plants from single, isolated cells in micro cultures. Science, 150, 889–892.CrossRefPubMedGoogle Scholar
  45. 45.
    Heller, R. (1953). Recherches sur la nutrition minerale des tissus végétaux cultivé in vitro. Annales des Sciences Naturelles-Botanique et Biologie Vegetale, 14, 1–223.Google Scholar
  46. 46.
    Nitsch, J. P., & Nitsch, C. (1956). Auxin-dependent growth of excised Helianthus tuberosus tissues. American Journal of Botany, 43, 839–851.CrossRefGoogle Scholar
  47. 47.
    Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  48. 48.
    Gamborg, O. L., Murashige, T., Thorpe, T. A., & Vasil, I. K. (1976). Plant tissue culture media. In Vitro, 12, 473–478.PubMedGoogle Scholar
  49. 49.
    Morel, G. (1960). Producing virus-free cymbidium. American Orchid Society Bulletin, 29, 495–497.Google Scholar
  50. 50.
    Murashige, T. (1974). Plant propagation through tissue culture. Annual Review of Plant Physiology, 25, 135–166.CrossRefGoogle Scholar
  51. 51.
    White, P. R. (1934). Multiplication of the viruses of tobacco and Aucuba mosaics in growing excised tomato root tips. Phytopathology, 24, 1003–1011.Google Scholar
  52. 52.
    Limasset, P., & Cornuet, P. (1949). Recherche du virus de la mosaïque du tabac dans les méristèmes des plantes infectées. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 228, 1971–1972.Google Scholar
  53. 53.
    Morel, G., & Martin, C. (1952). Guérison de dahlias atteints d’une maladie á virus. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 235, 1324–1325.PubMedGoogle Scholar
  54. 54.
    Quak, F. (1961). Heat treatment and substances inhibiting virus multiplication, in meristem culture to obtain virus-free plants. Advances in Horticultural Science and Their Applications, 1, 144–148.Google Scholar
  55. 55.
    LaRue, C. D. (1942). The rooting of flowers in culture. Bulletin of Torrey Botanical Club, 69, 332–341.CrossRefGoogle Scholar
  56. 56.
    Rangan, T. S. (1982). Ovary, ovule and nucellus culture. In B. M. Johri (Ed.), Experimental embryology of vascular plants (pp. 105–129). Berlin: Springer-Verlag.Google Scholar
  57. 57.
    LaRue, C. D. (1949). Culture of the endosperm of maize. American Journal of Botany, 36, 798.Google Scholar
  58. 58.
    Johri, B. M., & Bhojwani, S. S. (1965). Growth responses of mature endosperm in cultures. Nature, 208, 1345–1347.CrossRefGoogle Scholar
  59. 59.
    Kanta, K., Rangaswamy, N. S., & Maheshwari, P. (1962). Test-tube fertilization in flowering plants. Nature, 194, 1214–1217.CrossRefGoogle Scholar
  60. 60.
    Zenkteler, M., Misiura, E., & Guzowska, I. (1975). Studies on obtaining hybrid embryos in test tubes. In H. Y. Mohan Ram, J. J. Shaw, & C. K. Shaw (Eds.), Form1, structure and function in plants (pp. 180–187). Meerut, India: Sarita Prakashan.Google Scholar
  61. 61.
    Tulecke, W. (1953). A tissue derived from the pollen of Ginkgo biloba. Science, 117, 599–600.PubMedCrossRefGoogle Scholar
  62. 62.
    Yamada, T., Shoji, T., & Sinoto, Y. (1963). Formation of calli and free cells in a tissue culture of Tradescantia reflexa. Botanical Magazine, 76, 332–339.Google Scholar
  63. 63.
    Guha, S., & Maheshwari, S. C. (1964). In vitro production of embryos from anthers of Datura. Nature, 204, 497.CrossRefGoogle Scholar
  64. 64.
    Guha, S., & Maheshwari, S. C. (1966). Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature, 212, 97–98.CrossRefGoogle Scholar
  65. 65.
    Bourgin, J. P., & Nitch, J. P. (1967). Obtention de Nicotiana haploides à partir de’étamines cultivées in vitro. Annals of Physiologie Végétale, 9, 377–382.Google Scholar
  66. 66.
    Cocking, E. C. (1960). A method for the isolation of plant protoplasts and vacuoles. Nature, 187, 927–929.CrossRefGoogle Scholar
  67. 67.
    Takebe, I., Labib, C., & Melchers, G. (1971). Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften, 58, 318–320.CrossRefGoogle Scholar
  68. 68.
    Carlson, P. S., Smith, H. H., & Dearing, R. D. (1972). Parasexual interspecific plant hybridization. Proceedings of the National Academy of Sciences of the United States of America, 69, 2292–2294.PubMedCrossRefGoogle Scholar
  69. 69.
    Braun, A. C. (1941). Development of secondary tumor and tumor strands in the crown-gall of sunflowers. Phytopathology, 31, 135–149.Google Scholar
  70. 70.
    Braun, A. C., & White, P. R. (1943). Bacteriological sterility of tissues derived from secondary crown-gall tumors. Phytopathology, 33, 85–100.Google Scholar
  71. 71.
    Braun, A. C. (1950). Thermal inactivation studies on the tumor inducing principle in crown-gall. Phytopathology, 40, 3.Google Scholar
  72. 72.
    Zaenen, I., van Larebeke, N., Touchy, H., Van Montagu, M., & Schell, J. (1974). Super-coiled circular DNA in crown-gall inducing Agrobacterium strains. Journal of Molecular BioIogy, 86, 109–127.CrossRefGoogle Scholar
  73. 73.
    Ledoux, L. (1965). Uptake of DNA by living cells. Progress in Nucleic Acid Research and Molecular Biology, 4, 231–267.PubMedCrossRefGoogle Scholar
  74. 74.
    Vasil, I. K. (Ed.) (1994). Cell culture and somatic cell genetics of plants (Vol. 1). Laboratory procedures and their applications. New York: Academic Press.Google Scholar
  75. 75.
    Vasil, I. K., & Thorpe, T. A. (Eds.). (1994). Plant cell and tissue culture. Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  76. 76.
    Yeoman, M. M., & Street, H. E. (1977). General cytology of cultured cells. In H. E. Street (Ed.), Plant tissue and cell culture (pp. 137–176). Oxford: Blackwell Scientific.Google Scholar
  77. 77.
    Lindsey, K., & Yeoman, M. M. (1985). Dynamics of plant cell cultures. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics of plants (Vol. 2, pp. 61–101). New York: Academic Press.Google Scholar
  78. 78.
    Fowke, L.C. (1986). Ultrastructural cytology of cultured plant tissues, cells, and protoplasts. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics of plants (Vol. 3, pp. 323–342). New York: Academic Press.Google Scholar
  79. 79.
    Fowke, L. C. (1987). Investigations of cell structure using cultured cells and protoplasts. In C. E. Green, D. A. Somers, W. P. Hackett, & D. D. Biesboer (Eds.), Plant tissue and cell culture (pp. 17–31). New York: A. R. Liss.Google Scholar
  80. 80.
    D’Amato, F. (1978). Chromosome number variation in cultured cells and regenerated plants. In T. A. Thorpe (Ed.), Frontiers of plant tissue culture 1978 (pp. 287–295). Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services.Google Scholar
  81. 81.
    Nagl, W., Pohl, J., & Radler, A. (1985). The DNA endoreduplication cycles. In J. A. Bryant, & D. Francis (Eds.), The cell division cycle in plants (pp. 217–232). Cambridge: Cambridge University Press.Google Scholar
  82. 82.
    Yamada, Y., Fumihiko, S., & Hagimori, M. (1978). Photoautotropism in green cultured cells. In T. A., Thorpe (Ed.), Frontiers of plant tissue culture 1978 (pp. 453–462) Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services.Google Scholar
  83. 83.
    Hüsemann, W. (1985). Photoautotrophic growth of cells in culture. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics of plants, (Vol. 2, pp. 213–252). New York: Academic Press.Google Scholar
  84. 84.
    Neumann, K.-H., Barz, W., & Reinhard E. (Eds.). (1985). Primary and secondary metabolism of plant cell cultures. Berlin: Springer-Verlag.Google Scholar
  85. 85.
    Leonard, R. T., & Rayder, L. (1985). The use of protoplasts for studies on membrane transport in plants. In L. C. Fowke, & F. Constabel (Eds.), Plant protoplasts (pp. 105–118). Boca Raton, Florida: CRC Press.Google Scholar
  86. 86.
    Filner, P. (1978). Regulation of inorganic nitrogen and sulfur assimilation in cell suspension cultures. In T. A. Thorpe (Ed.), Frontiers of plant tissue culture 1978 (pp. 437–442). Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services.Google Scholar
  87. 87.
    Fowler, M. W. (1978). Regulation of carbohydrate metabolism in cell suspension cultures. In T. A. Thorpe (Ed.), Frontiers of plant tissue culture 1978 (pp. 443–452). Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services.Google Scholar
  88. 88.
    Bender, L., Kumar, A., & Neumann, K.-H. (1985). On the photosynthetic system and assimilate metabolism of Daucus and Arachis cell cultures. In K.-H. Neumann, W. Barz, & E. Reinhard (Eds.), Primary and secondary metabolism of plant cell cultures (pp. 24–42). Berlin: Springer-Verlag.Google Scholar
  89. 89.
    Herzbeck, H., & Husemann, W. (1985). Photosynthetic carbon metabolism in photoautotrophic cell suspension cultures of Chenopodium rubrum L. In K. -H. Neumann, W. Barz, & E. Reinhard (Eds.), Primary and secondary metabolism of plant cell culture (pp. 15–23). Berlin: Springer-Verlag.Google Scholar
  90. 90.
    Constabel, F., & Vasil, I. K. (Eds.), (1987). Cell culture and somatic cell genetics of plants (Vol. 4). New York: Academic Press.Google Scholar
  91. 91.
    Constabel, F., & Vasil, I. K. (Eds.), (1988). Cell Culture and somatic cell genetics of plants (Vol. 5). New York: Academic Press.Google Scholar
  92. 92.
    Roberts, L. W. (1976). Cytodifferentiation in plants: Xylogenesis as a model system. Cambridge: Cambridge University Press.Google Scholar
  93. 93.
    Phillips, R. (1980). Cytodifferentiation. International Review of Cytology. Supplement, 11A, 55–70.Google Scholar
  94. 94.
    Fukuda, H., & Komamine, A. (1985). Cytodifferentiation. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics of plants (Vol. 2, pp. 149–212). New York: Academic Press.Google Scholar
  95. 95.
    Schell, J., van Montague, M., Holsters, M., et al. (1982). Plant cells transformed by modified Ti plasmids: A model system to study plant development. In L. Jaenicke (Ed.), Biochemistry of Differentiation and Morphogenesis (pp. 65–73). Berlin: Springer-Verlag.Google Scholar
  96. 96.
    Schell, J. S. (1987). Transgenic plants as tools to study the molecular organization of plant genes. Science, 237, 1176–1183.CrossRefGoogle Scholar
  97. 97.
    Thorpe, T. A. (1980). Organogenesis in vitro: Structural, physiological, and biochemical aspects. International Review of Cytology. Supplement, 11A, 71–111.Google Scholar
  98. 98.
    Tran Thanh Van, K., & Trinh, H. (1978). Morphogenesis in thin cell layers: Concept, methodology and results. In T. A. Thorpe (Ed.), Frontiers of plant tissue culture 1978 (pp. 37–48). Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services.Google Scholar
  99. 99.
    Van Tran Thanh, K. (1980). Control of morphogenesis by inherent and exogenously applied factors in thin cell layers. International Review of Cytology. Supplement, 11A, 175–194.Google Scholar
  100. 100.
    Murashige, T. (1979). Principles of rapid propagation. In K. W. Hughes, R. Henke, & M. Constantin (Eds.), Propagation of higher plants through tissue culture: A bridge between research and application (pp. 14–24). Tech. Information Center, U.S. Dept. of Energy.Google Scholar
  101. 101.
    Brown, D. C. W., & Thorpe, T. A. (1986). Plant regeneration by organogenesis. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics of plants (Vol. 3, pp. 49–65). New York: Academic Press.Google Scholar
  102. 102.
    Thompson, M. R., & Thorpe, T. A. (1990). Biochemical perspectives in tissue culture for crop improvement. In K. R. Khanna (Ed.), Biochemical aspects of crop improvement (pp. 327–358). Boca Raton, Florida: CRC Press.Google Scholar
  103. 103.
    Ammirato, P. V. (1983). Embryogenesis. In D. A. Evans, W. R. Sharp, P. V. Ammirato, & Y. Yamada (Eds.), Handbook of plant cell culture (Vol. 1, pp. 82–123). New York: MacMillan.Google Scholar
  104. 104.
    Thorpe, T. A. (1988). In vitro somatic embryogenesis. ISI Atlas of Science: Animal and Plant Sciences, pp. 81–88.Google Scholar
  105. 105.
    Nomura, K., & Komamine, A. (1985). Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot suspension culture. Plant Physiology, 79, 988–991.PubMedGoogle Scholar
  106. 106.
    Butcher, D. N. (1977). Plant tumor cells. In H. E. Street (Ed.), Plant tissue and cell culture (pp. 429–461). Oxford: Blackwell Scientific.Google Scholar
  107. 107.
    Rottier, P. J. M. (1978). The biochemistry of virus multiplication in leaf cell protoplasts. In T. A. Thorpe (Ed.), Frontiers of plant tissue culture 1978 (pp. 255–264). Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services.Google Scholar
  108. 108.
    Earle, E. D. (1978). Phytotoxin studies with plant cells and protoplasts. In T. A. Thorpe (Ed.), Frontiers of plant tissue culture 1978 (pp. 363–372). Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services.Google Scholar
  109. 109.
    Miller, S. A., & Maxwell, D. P. (1983). Evaluation of disease resistance. In D. A. Evans, W. R. Sharp, P. V. Ammirata, & Y. Yamada (Eds.), Handbook of plant cell culture (Vol. 1, pp. 853–879). New York: Macmillan.Google Scholar
  110. 110.
    Yeung, E. C., Thorpe, T. A., & Jensen, C .J. (1981). In vitro fertilization and embryo culture. In T. A. Thorpe (Ed.), Plant tissue culture: Methods and applications in agriculture (pp. 253–271). New York: Academic Press.Google Scholar
  111. 111.
    Zenkteler, M. (1984). In vitro pollination and fertilization. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics of plants (Vol. 1, pp. 269–275). New York: Academic Press.Google Scholar
  112. 112.
    Raghavan, V. (1980). Embryo culture. International Review of Cytology. Supplement, 11B, 209–240.Google Scholar
  113. 113.
    Collins, G. B., & Grosser, J. W. (1984). Culture of embryos. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics of plants (Vol. 1, pp. 241–257). New York: Academic Press.Google Scholar
  114. 114.
    Hu, H., & Zeng, J. Z. (1984). Development of new varieties of anther culture. In P. V. Ammirato, D. A. Evans, W. R. Sharp, & Y. Yamada (Eds.), Handbook of plant cell culture (Vol. 3, pp. 65–90). New York: Macmillan.Google Scholar
  115. 115.
    San, L. H., & Gelebart, P. (1986). Production of gynogenetic haploids. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics of plants (Vol. 3, pp. 305–322). New York: Academic Press.Google Scholar
  116. 116.
    Flick, C. E. (1983). Isolation of mutants from cell culture. In P. V. Ammirato, D. A. Evans, W. R. Sharp, & Y. Yamada (Eds.), Handbook of plant cell culture (Vol. I, pp. 393–441). New York: Macmillan.Google Scholar
  117. 117.
    Larkin, P. J., & Scowcroft, W. R. (1981). Somaclonal variation -a novel source of variability from cell culture for plant improvement. Theoretical and Applied Genetics, 60, 197–214.CrossRefGoogle Scholar
  118. 118.
    Larkin, P. J., Brettell, R. I. S., Ryan, S. A., Davies, P. A., Pallotta, M. A., & Scowcroft, W. R. (1985). Somaclonal variation: impact on plant biology and breeding strategies. In P. Day, M. Zaitlin, & A. Hollaender (Eds.), Biotechnology in plant science (pp. 83–100). New York: Academic Press.Google Scholar
  119. 119.
    Scowcroft, W. R., Brettell, R. I. S., Ryan, S. A., Davies, P. A., & Pallotta, M. A. (1987). Somaclonal variation and genomic flux. In C. E. Green, D. A. Somers, W. P. Hackett, & D. D. Biesboer (Eds.), Plant tissue and cell culture (pp. 275–286). New York: A. R. Liss.Google Scholar
  120. 120.
    Jacobs, M., Negrutiu, I., Dirks, R., & Cammaerts, D. (1987). Selection programmes for isolation and analysis of mutants in plant cell cultures. In C. E. Green, D. A. Somers, W. P. Hackett, & D. D. Biesboer (Eds.), Plant tissue and cell culture (pp. 243–264). New York: A. R. Liss.Google Scholar
  121. 121.
    Hughes, K. (1983). Selection for herbicide resistance. In P. V. Ammirato, D. A. Evans, W. R. Sharp, & Y. Yamada (Eds.), Handbook of plant cell culture (Vol. 1, pp. 442–460). New York: Macmillan.Google Scholar
  122. 122.
    Ranch, J. P., Rick, S., Brotherton, J. E., & Widholm, J. (1983). Expression of 5 methyltryptophan resistance in plants regenerated from resistant cell lines of Datura innoxia. Plant Physiology, 71, 136–140.PubMedCrossRefGoogle Scholar
  123. 123.
    Binding, H. (1986). Regeneration from protoplasts. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics of plants (Vol. 3, pp. 259–274). New York: Academic Press.Google Scholar
  124. 124.
    Evans, D. A., Sharp, W. R., & Bravo, J. E. (1984). Cell culture methods for crop improvement. In W. R. Sharp, D. A. Evans, P. V. Ammirato, & Y. Yamada (Eds.), Handbook of plant cell culture (Vol. 2, pp. 47–68). New York: Macmillan.Google Scholar
  125. 125.
    Schieder, O., & Kohn, H. (1986). Protoplast fusion and generation of somatic hybrids. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics of plants (Vol. 3, pp. 569–588). New York: Academic Press.Google Scholar
  126. 126.
    Chetrit, P., Mathieu, C., Vedel, F., Pelletier, G., & Primard, C. (1985). Mitochondrial DNA polymorphism induced by protoplast fusion in Cruciferae. Theoretical and Applied Genetics, 69, 361–366.CrossRefGoogle Scholar
  127. 127.
    Potrykus, I., Shillito, R. D., Saul, M., & Paszkowski, J. (1985). Direct gene transfer: State of the art and future potential. Plant Molecular Biology Reporter, 3, 117–128.Google Scholar
  128. 128.
    Deshayes, A., Herrera-Estrella, L., & Caboche, M. (1985). Liposome-mediated transformation of tobacco mesophyll protoplasts by an Escherichia coli plasmid. The EMBO Journal, 4, 2731–2739.PubMedGoogle Scholar
  129. 129.
    Crossway, A., Oakes, J. V., Irvine, J. M., Ward, B., Knauf, V. C., & Shewmaker, C. K. (1986). Integration of foreign DNA following microinjection of tobaccomesophyll protoplasts. Molecular & General Genetics, 202, 179–185.CrossRefGoogle Scholar
  130. 130.
    Klein, T. M., Wolf, B. D., Wu, R., & Sanford, J. C. (1987). High-velocity microprojectiles for delivering nucleic acids into living cells. Nature, 327, 70–73.CrossRefGoogle Scholar
  131. 131.
    DeBlock, M., Herrera-Estrella, L., van Montague, M., Schell, J., & Zambryski, P. (1984). Expression of foreign genes in regenerated plants and in their progeny. The EMBO Journal, 3, 1681–1689.Google Scholar
  132. 132.
    Borsch, R. B., Fraley, R. T., Rogers, S. G., Sanders, F. R., Lloyd, A., & Boffmann, N. (1984). Inheritance of functional foreign genes in plants. Science, 223, 496–498.CrossRefGoogle Scholar
  133. 133.
    Gasser, C. S., & Fraley, R. T. (1989). Genetically engineering plants for crop improvement. Science, 244, 1293–1299.PubMedCrossRefGoogle Scholar
  134. 134.
    Uchimiya, H., Handa, T., & Brar, D. S. (1989). Transgenic plants. Journal of Biotechnology, 12, 1–20.CrossRefGoogle Scholar
  135. 135.
    Kartha, K.K. (1981). Meristem culture and cryopreservation methods and applications. In T. A. Thorpe (Ed.), Plant tissue culture: Methods and applications in agriculture (pp. 181–211). New York: Academic Press.Google Scholar
  136. 136.
    Dodds, J. (1989). Tissue culture for germplasm management and distribution, in Strengthening Collaboration. In J. I. Cohen (Ed.), Biotechnology: International agricultural research and the private sector (pp. 109–128). Washington, D.C.: Bureau of Science and Technology, AID.Google Scholar
  137. 137.
    Withers, L. A. (1985). Cryopreservation of cultured cells and meristems. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics of plants (Vol. 2, pp. 253–316). New York: Academic Press.Google Scholar
  138. 138.
    Murashige, T. (1978). The impact of plant tissue culture on agriculture. In T. A. Thorpe (Ed.), Frontiers of plant tissue culture 1978 (pp. 15–26). Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services.Google Scholar
  139. 139.
    Conger B. V. (Ed.) (1981). Cloning agricultural plants via in vitro techniques. Boca Raton, Florida: CRC Press.Google Scholar
  140. 140.
    Murashige, T. (1990). Plant propagation by tissue culture: practice with unrealized potential. In P. V. Ammirato, D. A. Evans, W. R. Sharp, & Y. P. S. Bajaj (Eds.), Handbook of plant cell culture (Vol. 5, pp. 3–9). New York: McGraw-Hill.Google Scholar
  141. 141.
    Zimmerman, R. H. (1986). Regeneration in woody ornamentals and fruit trees. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics of plants (Vol. 3, pp. 243–258). New York: Academic Press.Google Scholar
  142. 142.
    Zenk, M. H. (1978). The impact of plant cell culture on industry. In T. A. Thorpe (Ed.), Frontiers of plant tissue culture 1978 (pp. 1–13). Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services.Google Scholar
  143. 143.
    Wink, M. (1987). Physiology of the accumulation of secondary metabolites with special reference to alkaloids. In F. Constabel, & I. K. Vasil (Eds.), Cell culture and somatic cell genetics of plants (Vol. 4, pp. 17–42). New York: Academic Press.Google Scholar
  144. 144.
    Dougall, D. K. (1987). Primary metabolism and its regulation. In C. E. Green, D. A. Somers, W. P. Hackett, & D. D. Biesboer (Eds.), Plant tissue and cell culture (pp. 97–117). New York: A. R. Liss.Google Scholar
  145. 145.
    Kemp, H. A., & Morgan, M. R. A. (1987). Use of immunoassays in the detection of plant cell products. In F. Constabel, & I. K. Vasil (Eds.), Cell culture and somatic cell genetics of plants (Vol. 4, pp. 287–302). New York: Academic Press.Google Scholar
  146. 146.
    Widholm, J. M. (1987). Selection of mutants which accumulate desirable secondary products. In F. Constabel, & I. K. Vasil (Eds.), Cell culture and somatic cell genetics of plants (Vol. 4, pp. 125–137). New York: Academic Press.Google Scholar
  147. 147.
    Eilert, U. (1987). Elicitation: Methodology and aspects of application. In F. Constabel, & I. K. Vasil (Eds.), Cell culture and somatic cell genetics of plants (Vol. 4, pp. 153–196). New York: Academic Press.Google Scholar
  148. 148.
    Kurz, W.G.W. (1988). Semicontinuous metabolite production through repeated elicitation of plant cell cultures: A novel process. In T. J. Mabry (Ed.), Plant biotechnology (pp. 93–103). Austin: IC2 Institute.Google Scholar
  149. 149.
    Brodelius, P. (1985). The potential role of immobilisation in plant cell biotechnology. Trends in Biotechnology, 3, 280–285.CrossRefGoogle Scholar
  150. 150.
    Yeoman, M. M. (1987). Techniques, characteristics, properties, and commercial potential of immobilized plant cells. In F. Constabel, & I. K. Vasil (Eds.), Cell culture and somatic cell genetics of plants (Vol. 4, pp. 197–215). New York: Academic Press.Google Scholar
  151. 151.
    Fowler, M. W. (1987). Process systems and approaches for large-scale plant cell culture. In C. E. Green, D. A. Somers, W. P. Hackett, & D. D. Biesboer (Eds.), Plant tissue and cell culture (pp. 459–471). New York: A. R. Liss.Google Scholar
  152. 152.
    Beiderbeck, R., & Knoop, B. (1987). Two-phase culture. In F. Constabel, & I. K. Vasil (Eds.), Cell culture and somatic cell genetics of plants (Vol. 4, pp. 255–266). New York: Academic Press.Google Scholar
  153. 153.
    Fujita, Y., & Tabata, M. (1987). Secondary metabolites from plant cells—phar-maceutical applications and progress in commercial production. In C. E. Green, D. A. Somers, W. P. Hackett, & D. D. Biesboer (Eds.), Plant tissue and cell culture (pp. 169–185). New York: A. R. Liss.Google Scholar
  154. 154.
    Vasil, I. K., & Vasil, V. (1994). In vitro culture of cereals, grasses. In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 293–312). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  155. 155.
    Davey, M. R., Kumar, V., & Hammatt, N. (1994). In vitro culture of legumes. In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 313–329). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  156. 156.
    Reynolds, J. F. (1994). In vitro culture of vegetable crops. In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 331–362). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  157. 157.
    Jones, M. G. K. (1994). In vitro culture of potato In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 363–378). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  158. 158.
    Krikorian, A. D. (1994). In vitro culture of root, tuber crops. In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 379–411). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  159. 159.
    Palmer, C. E., & Keller, W. A. (1994). In vitro culture of oilseeds. In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 413–455). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  160. 160.
    Zimmerman, R. H., & Swartz, H. J. (1994). In vitro culture of temperate fruits. In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 457–474). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  161. 161.
    Grosser, I. W. (1994). In vitro culture of tropical fruits. In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 475–496). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  162. 162.
    Krikorian, A. D. (1994). In vitro culture of plantation crops. In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 497–537). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  163. 163.
    Harry, I. S., & Thorpe, T. A. (1994). In vitro culture of forest trees. In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 539–560). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  164. 164.
    Debergh, P. (1994). In vitro culture of ornamentals. In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 561–573). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  165. 165.
    Karp, A. (1994). Origins, causes and uses of variation in plant tissue cultures. In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 139–151). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  166. 166.
    Dix, P. J. (1994). Isolation and characterisation of mutant cell lines. In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 119–138). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  167. 167.
    Feher, A., & Dudits, D. (1994). Plant protoplasts for cell fusion and direct DNA uptake: culture and regeneration systems. In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 71–118). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  168. 168.
    Kartha, K. K., & Engelmann, F. (1994). Cryopreservation and geffi1plasm storage. In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 195–230). Dordrecht. The Netherlands: Kluwer Acad. Publ.Google Scholar
  169. 169.
    Redenbaugh K. (Ed.) (1993). Synseeds: Applications of synthetic seeds to crop improvement. Boca Raton, FL: CRC Press.Google Scholar
  170. 170.
    Lowe, K. C., Davey, M. R., & Power, J. B. (1996). Plant tissue culture: past, present and future. Plant Tiss. Cult. Biotechnol, 2, 175–186.Google Scholar
  171. 171.
    Kong, L., Attree, S. M., Evans, D. E., Binarova, P., Yeung, E. C., & Fowke, L. C. (1998). Somatic embryogenesis in white spruce: studies of embryo development, cell biology. In S. M. Jain, & P. K. Gupta (Eds.), Somatic embryogenesis in woody plants (Vol. 4, pp. 1–28). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  172. 172.
    Kaeppler, S. M., & Phillips, R. L. (1993). DNA methylation and tissue culture-induced variation in plants. In Vitro Cellular & Developmental Biology, 29P, 125–130.Google Scholar
  173. 173.
    Komamine, A., Ito, M., & Kawahara, R. (1993). Cell culture systems as useful tools for investigation of developmental biology in higher plants: analysis of mechanisms of the cell cycle and differentiation using plant cell cultures. In W. Y. Soh, J. R., Liu, & A., Komamine (Eds.), Advances in developmental biology and biotechnology of higher plants (pp. 289–310). Proceedings First Asia Pacific Conference on Plant Cell and Tissue Culture, held in Taedok Science Town, Taejon, Korea, 59 Sept. 1993,. The Korean Society of Plant Tissue Culture.Google Scholar
  174. 174.
    Trehin, C., Planchais, S., Glab, N., Perennes, C., Tregear, J., & Bergounioux, C. (1998). Cell cycle regulation by plant growth regulators: involvement of auxinand cytokinin in the re-entry of Petunia protoplasts into the cell cycle. Planta, 206, 215–224.PubMedCrossRefGoogle Scholar
  175. 175.
    Gaspar, T. (1995). The concept of cancer in in vitro plant cultures and the implication of habituation to hormones and hyperhydricity. Plant Tissue Culture & Biotechnology, 1, 126–136.Google Scholar
  176. 176.
    Suguira, M. (1997). In vitro transcription systems from suspension-cultured cells. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 383–398.CrossRefGoogle Scholar
  177. 177.
    Stitt, M., & Sonnewald, U. (1995). Regulation of carbohydrate metabolism in transgenics. Annual Review of Plant Physiology and Plant Molecular Biology, 46, 341–368.CrossRefGoogle Scholar
  178. 178.
    Kutchin, T. M. (1998). Molecular genetics of plant alkaloid biosynthesis. In G. Cordell (Ed.), The alkaloids (Vol. 50, pp. 257–316). San Diego: Academic Press.Google Scholar
  179. 179.
    Verpoorte, R., van der Heijden, R., ten Hoopen, H. J. G., & Memclink, J. (1998). Metabolic engineering for the improvement of plant secondary metabolite production. Plant Tissue Culture & Biotechnology, 4, 3–20.Google Scholar
  180. 180.
    The plant cell, Special Issue, July 1997.Google Scholar
  181. 181.
    Fukuda, H. (1997). Xylogenesis: initiation, progression, and cell death. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 299–325.CrossRefGoogle Scholar
  182. 182.
    Thorpe, T.A. (1993). Physiology and biochemistry of shoot bud formation in vitro. In W. Y. Soh, J. R. Liu, & A. Komamine (Eds.), Advances in developmental biology and biotechnology of higher plants (pp. 210–224). Proceedings First Asia Pacific Confer-ence on Plant Cells and Tissue Culture, held in Taedok Science Town, Taejon, Korea, 5–9 Sept. 1993, The Korean Society of Plant Tissue Culture.Google Scholar
  183. 183.
    Joy, IV R. W., & Thorpe, T. A. (1999). Shoot morphogenesis: Structure, physiology, biochemistry and molecular biology. In W. Y. Soh, & S. S. Bhojwani (Eds.), Morphogenesis in plant tissue cultures (pp. 171–214). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  184. 184.
    Nomura, K., & Komamine, A. (1995). Physiological and biochemical aspects of somatic embryogenesis. In T. A. Thorpe (Ed.), In vitro embryogenesis in plants (pp. 249–265). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  185. 185.
    Dudits, D., Györgyey, J., Bögre, L., & Bakó, L. (1995). Molecular biology of somatic embryogenesis. In T. A. Thorpe (Ed.), In vitro embryogenesis in plants (pp. 267–308). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  186. 186.
    Thorpe, T. A., & Stasolla, C. (2001). Somatic embryogenesis. In S. S. Bhojwani, & W. Y. Soh (Eds.), Current trends in the embryology of angiosperms (pp. 279–236). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  187. 187.
    Hinchee, M. A. W., Corbin, D. R., Armstrong, C. L., et al. (1994). Plant transformation, In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 231–270). Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  188. 188.
    Fraley, R. T., Rogers, S. G., Borsch, R. B., et al. (1985). The SEV system: a new disarmed Ti plasmid vector system for plant transformation. Bio/Technology, 3, 629–635.CrossRefGoogle Scholar
  189. 189.
    Horsch, R. B., Fry, J., Hoffman, N., et al. (1985). A simple and general method for transferring genes into plants. Science, 227, 1229–1231.CrossRefGoogle Scholar
  190. 190.
    Cloutier, S., & Landry, B. S. (1994). Molecular markers applied to plant tissue culture. In vitro Cellular & Developmental Biology, 31P, 32–39.Google Scholar
  191. 191.
    Sanford, J. C. (2000). The development of the biolistic process. In vitro Cellular & Developmental Biology. Plant, 36, 303–308.CrossRefGoogle Scholar
  192. 192.
    Fraley, R. (1992). Sustaining the food supply. Bio/Technology, 10, 40–43.CrossRefGoogle Scholar
  193. 193.
    Potrykus, I. (2001). The Golden Rice tale. In vitro Cellular & Developmental Biology. Plant, 37, 93–100.CrossRefGoogle Scholar
  194. 194.
    Altman, A., Ziv, M., & Izhar, S. (Eds.) (1999). Plant biotechnology and in vitro biology in the 21st century. Proceedings of the IXth International Congress of the International Association for Plant Tissue Culture and Biotechnology, Jerusalem, Israel, 14–19 June, 1998. Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  195. 195.
    Vasil, I. K. (Ed.) (2003). Plant biotechnology 2002 and beyond. Proceedings of the 10th IAPTC&B Congress, June 23–28, 2002, Orlando, FL, USA.Dordrecht, The Netherlands: Kluwer Acad. Publ.Google Scholar
  196. 196.
    Schell J. (1995). Progress in plant sciences is our best hope to achieve an economically rewarding, sustainable and environmentally stable agriculture. Plant Tissue Culture & Biotechnology, 1, 10–12.Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Biological SciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations