Molecular Biotechnology

, Volume 36, Issue 3, pp 184–204 | Cite as

Gene delivery by lentivirus vectors

Original Paper


The capacity to efficiently transduce nondividing cells, shuttle large genetic payloads, and maintain stable long-term transgene expression are attributes that have brought lentiviral vectors to the forefront of gene delivery vehicles for research and therapeutic applications in a clinical setting. Our discussion initiates with advances in lentiviral vector development and how these sophisticated lentiviral vectors reflect improvements in safety, regarding the prevention of replication competent lentiviruses (RCLs), vector mobilization, and insertional mutagenesis. Additionally, we describe conventional molecular regulatory systems to manage gene expression levels in a spatial and temporal fashion in the context of a lentiviral vector. State of the art technology for lentiviral vector production by transient transfection and packaging cell lines are explicitly presented with current practices used for concentration, purification, titering, and determining the safety of a vector stock. We summarize lentiviral vector applications that have received a great deal of attention in recent years including the generation of transgenic animals and the stable delivery of RNA interference molecules. Concluding remarks address some of the successes in preclinical animals, and the recent transition of lentiviral vectors to human clinical trials as therapy for a variety of infectious and genetic diseases.


Lentiviral vector Gene therapy RNA interference Clinical Animal model Envelope Packaging Biosafety Mobilization Insertional mutagenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors of this review apologize to investigators whose studies were not described in this manuscript, or were inadequately presented.


  1. 1.
    Shimotohno, K., & Temin, H. M. (1981). Formation of infectious progeny virus after insertion of herpes simplex thymidine kinase gene into DNA of an avian retrovirus. Cell, 26, 67–77.PubMedGoogle Scholar
  2. 2.
    Wei, C. M., Gibson, M., Spear, P. G., & Scolnick, E. M. (1981). Construction and isolation of a transmissible retrovirus containing the src gene of Harvey murine sarcoma virus and the thymidine kinase gene of herpes simplex virus type 1. Journal of␣Virology, 39, 935–944.PubMedGoogle Scholar
  3. 3.
    Aiuti, A. et al. (2002). Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science, 296, 2410–2413.PubMedGoogle Scholar
  4. 4.
    Cavazzana-Calvo, M. et al. (2000). Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science, 288, 669–672.PubMedGoogle Scholar
  5. 5.
    Hacein-Bey-Abina, S. et al. (2002). Sustained correction of X-linked severe combined immunodeficiency by ex␣vivo gene therapy. The New England Journal of Medicine, 346, 1185–1193.PubMedGoogle Scholar
  6. 6.
    Gaspar, H. B. et al. (2004). Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet, 364, 2181–2187.PubMedGoogle Scholar
  7. 7.
    Ott, M. G. et al. (2006). Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nature Medicine, 12, 401–409.PubMedGoogle Scholar
  8. 8.
    Hacein-Bey-Abina, S. et al. (2003). A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. The New England Journal of Medicine, 348, 255–256.PubMedGoogle Scholar
  9. 9.
    Check, E. (2005). Gene therapy put on hold as third child develops cancer. Nature, 433, 561.Google Scholar
  10. 10.
    Nienhuis, A. W., Dunbar, C. E., & Sorrentino, B. P. (2006). Genotoxicity of retroviral integration in hematopoietic cells. Molecular Therapy, 13, 1031–1049.PubMedGoogle Scholar
  11. 11.
    Lewis, P., Hensel, M., & Emerman, M. (1992). Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO Journal, 11, 3053–3058.PubMedGoogle Scholar
  12. 12.
    Naldini, L. et al. (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 272, 263–267.PubMedGoogle Scholar
  13. 13.
    Arya, S. K., Zamani, M., & Kundra, P. (1998). Human immunodeficiency virus type 2 lentivirus vectors for gene transfer: Expression and potential for helper virus-free packaging. Human Gene Therapy, 9, 1371–1380.PubMedGoogle Scholar
  14. 14.
    Schnell, T., Foley, P., Wirth, M., Munch, J., & Uberla, K. (2000). Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus. Human Gene Therapy, 11, 439–447.PubMedGoogle Scholar
  15. 15.
    Olsen, J. C. (1998). Gene transfer vectors derived from equine infectious anemia virus. Gene Therapy, 5, 1481–1487.PubMedGoogle Scholar
  16. 16.
    Berkowitz, R. D., Ilves, H., Plavec, I., & Veres, G. (2001). Gene transfer systems derived from Visna virus: Analysis of virus production and infectivity. Virology, 279, 116–129.PubMedGoogle Scholar
  17. 17.
    Berkowitz, R. et al. (2001). Construction and molecular analysis of gene transfer systems derived from bovine immunodeficiency virus. Journal of Virology, 75, 3371–3382.PubMedGoogle Scholar
  18. 18.
    Mselli-Lakhal, L., Guiguen, F., Greenland, T., Mornex, J. F., &␣Chebloune, Y. (2006). Gene transfer system derived from the caprine arthritis-encephalitis lentivirus. Journal of Virological Methods, 136, 177–184.PubMedGoogle Scholar
  19. 19.
    Poeschla, E. M., Wong-Staal, F., & Looney, D. J. (1998). Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nature Medicine, 4, 354–357.PubMedGoogle Scholar
  20. 20.
    Wiznerowicz, M., & Trono, D. (2005). Harnessing HIV for therapy, basic research and biotechnology. Trends in Biotechnology, 23, 42–47.PubMedGoogle Scholar
  21. 21.
    Cockrell, A. S., & Kafri, T. (2003). HIV-1 vectors: Fulfillment of expectations, further advancements, and still a way to go.␣Current HIV Research, 1, 419–439.PubMedGoogle Scholar
  22. 22.
    Gallay, P., Swingler, S., Song, J., Bushman, F., & Trono, D. (1995). HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell, 83, 569–576.PubMedGoogle Scholar
  23. 23.
    Gallay, P., Stitt, V., Mundy, C., Oettinger, M., & Trono, D. (1996). Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import. Journal of Virology, 70, 1027–1032.PubMedGoogle Scholar
  24. 24.
    Gallay, P., Hope, T., Chin, D., & Trono, D. (1997). HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proceedings of the National Academy of Sciences of the USA, 94, 9825–9830.PubMedGoogle Scholar
  25. 25.
    Bouyac-Bertoia, M. et al. (2001). HIV-1 infection requires a functional integrase NLS. Molecular Cell, 7, 1025–1035.PubMedGoogle Scholar
  26. 26.
    Zennou, V., Petit, C., Guetard, D., Nerhbass, U., Montagnier, L., & Charneau, P. (2000). HIV-1 genome nuclear import is mediated by a central DNA flap. Cell, 101, 173–185.PubMedGoogle Scholar
  27. 27.
    Yamashita, M., & Emerman, M. (2006). Retroviral infection of non-dividing cells: Old and new perspectives. Virology, 344, 88–93.PubMedGoogle Scholar
  28. 28.
    Kafri, T., Blomer, U., Peterson, D. A., Gage, F. H., & Verma, I. M. (1997). Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nature Genetics, 17, 314–317.PubMedGoogle Scholar
  29. 29.
    Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L., & Trono, D. (1997). Multiply attenuated lentiviral vector achieves efficient gene delivery in␣vivo. Nature Biotechnology, 15, 871–875.PubMedGoogle Scholar
  30. 30.
    Naldini, L., Blomer, U., Gage, F. H., Trono, D., & Verma, I. M. (1996). Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proceedings of the National Academy of Sciences of the USA, 93, 11382–11388.PubMedGoogle Scholar
  31. 31.
    Blomer, U., Naldini, L., Kafri, T., Trono, D., Verma, I. M., &␣Gage, F. H. (1997). Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. Journal of␣Virology, 71, 6641–6649.PubMedGoogle Scholar
  32. 32.
    Ellis, J. (2005). Silencing and variegation of gammaretrovirus and lentivirus vectors. Human Gene Therapy, 16, 1241–1246.PubMedGoogle Scholar
  33. 33.
    Kim, V. N., Mitrophanous, K., Kingsman, S. M., & Kingsman, A. J. (1998). Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. Journal of Virology, 72, 811–816.PubMedGoogle Scholar
  34. 34.
    Akkina, R. K., Walton, R. M., Chen, M. L., Li, Q. X., Planelles, V., & Chen, I. S. (1996). High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. Journal of␣Virology, 70, 2581–2585.PubMedGoogle Scholar
  35. 35.
    Abordo-Adesida, E. et al. (2005). Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses. Human Gene Therapy, 16, 741–751.PubMedGoogle Scholar
  36. 36.
    Follenzi, A., Battaglia, M., Lombardo, A., Annoni, A., Roncarolo, M. G., & Naldini, L. (2004). Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood, 103, 3700–3709.PubMedGoogle Scholar
  37. 37.
    Lamikanra, A., Myers, K. A., Ferris, N., Mitrophanous, K. A., &␣Carroll, M. W. (2005). In vivo evaluation of an EIAV vector for the systemic genetic delivery of therapeutic antibodies. Gene Therapy, 12, 988–998.PubMedGoogle Scholar
  38. 38.
    Manilla, P. et al. (2005). Regulatory considerations for novel gene therapy products: A review of the process leading to the first clinical lentiviral vector. Human Gene Therapy, 16, 17–25.PubMedGoogle Scholar
  39. 39.
    Aiken, C. (1997). Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A. Journal of Virology, 71, 5871–5877.PubMedGoogle Scholar
  40. 40.
    DePolo, N. J. et al. (2000). VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Molecular Therapy, 2, 218–222.PubMedGoogle Scholar
  41. 41.
    Higashikawa, F., & Chang, L. (2001). Kinetic analyses of stability of simple and complex retroviral vectors. Virology, 280, 124–131.PubMedGoogle Scholar
  42. 42.
    Croyle, M. A. et al. (2004). PEGylation of a vesicular stomatitis virus G pseudotyped lentivirus vector prevents inactivation in serum. Journal of Virology, 78, 912–921.PubMedGoogle Scholar
  43. 43.
    Cronin, J., Zhang, X. Y., & Reiser, J. (2005). Altering the tropism of lentiviral vectors through pseudotyping. Current Gene Therapy, 5, 387–398.PubMedGoogle Scholar
  44. 44.
    Baliga, C. S., van Maanen, M., Chastain, M., & Sutton, R. E. (2006). Vaccination of mice with replication-defective human immunodeficiency virus induces cellular and humoral immunity and protects against vaccinia virus-gag challenge. Molecular Therapy, 14, 432–441.PubMedGoogle Scholar
  45. 45.
    Morizono, K. et al. (2005). Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nature Medicine, 11, 346–352.PubMedGoogle Scholar
  46. 46.
    Yang, L., Bailey, L., Baltimore, D., & Wang, P. (2006). Targeting lentiviral vectors to specific cell types in␣vivo. Proceedings of the National Academy of Sciences of the USA, 103, 11479–11484.PubMedGoogle Scholar
  47. 47.
    Torashima, T., Yamada, N., Itoh, M., Yamamoto, A., & Hirai, H. (2006). Exposure of lentiviral vectors to subneutral pH shifts the tropism from Purkinje cell to Bergmann glia. The European Journal of Neuroscience, 24, 371–380.PubMedGoogle Scholar
  48. 48.
    Dull, T. et al. (1998). A third-generation lentivirus vector with a conditional packaging system. Journal of Virology, 72, 8463–8471.PubMedGoogle Scholar
  49. 49.
    Kotsopoulou, E., Kim, V. N., Kingsman, A. J., Kingsman, S. M., & Mitrophanous, K. A. (2000). A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. Journal of␣Virology, 74, 4839–4852.PubMedGoogle Scholar
  50. 50.
    ter Brake, O., Konstantinova, P., Ceylan, M., & Berkhout, B. (2006). Silencing of HIV-1 with RNA interference: A multiple shRNA approach. Molecular Therapy, 14, 883–892.PubMedGoogle Scholar
  51. 51.
    Wu, X. et al. (2000). Development of a novel trans-lentiviral vector that affords predictable safety. Molecular Therapy, 2, 47–55.PubMedGoogle Scholar
  52. 52.
    Kappes, J. C., Wu, X., & Wakefield, J. K. (2003). Production of trans-lentiviral vector with predictable safety. Methods in Molecular Medicine, 76, 449–465.PubMedGoogle Scholar
  53. 53.
    Frederickson, R. M. (2005). Report from the 2nd stem cell clonality and genotoxicity retreat. Molecular Therapy, 12, 379–383.Google Scholar
  54. 54.
    Mortellaro, A. et al. (2006). Ex vivo gene therapy with lentiviral vectors rescues adenosine deaminase (ADA)-deficient mice and corrects their immune and metabolic defects. Blood, 108, 2979–2988.PubMedGoogle Scholar
  55. 55.
    Carbonaro, D. A. et al. (2006). In vivo transduction by intravenous injection of a lentiviral vector expressing human ADA into neonatal ADA gene knockout mice: A novel form of enzyme replacement therapy for ADA deficiency. Molecular Therapy, 13, 1110–1120.PubMedGoogle Scholar
  56. 56.
    Themis, M. et al. (2005). Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Molecular Therapy, 12, 763–771.PubMedGoogle Scholar
  57. 57.
    Tan, W., Dong, Z., Wilkinson, T. A., Barbas, C. F. 3rd, & Chow, S. A. (2006). Human immunodeficiency virus type 1 incorporated with fusion proteins consisting of integrase and the designed polydactyl zinc finger protein E2C can bias integration of viral DNA into a predetermined chromosomal region in human cells. Journal of Virology, 80, 1939–1948.PubMedGoogle Scholar
  58. 58.
    Bushman, F. D. (2002). Integration site selection by lentiviruses: Biology and possible control. Current Topics in Microbiology and Immunology, 261, 165–177.PubMedGoogle Scholar
  59. 59.
    Sandmeyer, S. (2003). Integration by design. Proceedings of the National Academy of Sciences of the USA, 100, 5586–5588.PubMedGoogle Scholar
  60. 60.
    Lombardo, A. et al. (2006). Towards Gene Correction of X-Linked SCID Using Engineered Zinc Finger Nucleases and Integrase Defective Lentiviral Delivery. Molecular Therapy, 13, S285.CrossRefGoogle Scholar
  61. 61.
    Chun, T. W. et al. (1997). Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature, 387, 183–188.PubMedGoogle Scholar
  62. 62.
    Pang, S., Koyanagi, Y., Miles, S., Wiley, C., Vinters, H. V., &␣Chen, I. S. (1990). High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature, 343, 85–89.PubMedGoogle Scholar
  63. 63.
    Teo, I. et al. (1997). Circular forms of unintegrated human immunodeficiency virus type 1 DNA and high levels of viral protein expression: association with dementia and multinucleated giant cells in the brains of patients with AIDS. Journal of␣Virology, 71, 2928–2933.PubMedGoogle Scholar
  64. 64.
    Brown, P. O. (1997). Integration. In: J. M. Coffin, S. H. Hughes, & H. E. Varmus (Eds.), Retroviruses (pp. 161–203). Plainview NY: Cold Spring Harbor Laboratory Press.Google Scholar
  65. 65.
    Pierson, T. C., Kieffer, T. L., Ruff, C. T., Buck, C., Gange, S. J., & Siliciano, R. F. (2002). Intrinsic stability of episomal circles formed during human immunodeficiency virus type 1 replication. Journal of Virology, 76, 4138–4144.PubMedGoogle Scholar
  66. 66.
    Butler, S. L., Johnson, E. P., & Bushman, F. D. (2002). Human immunodeficiency virus cDNA metabolism: Notable stability of two-long terminal repeat circles. Journal of Virology, 76, 3739–3747.PubMedGoogle Scholar
  67. 67.
    Brussel, A. et al. (2003). Longitudinal monitoring of 2-long terminal repeat circles in peripheral blood mononuclear cells from patients with chronic HIV-1 infection. Aids, 17, 645–652.PubMedGoogle Scholar
  68. 68.
    Wu, Y. (2004). HIV-1 gene expression: Lessons from provirus and non-integrated DNA. Retrovirology, 1, 13.PubMedGoogle Scholar
  69. 69.
    Engelman, A., Englund, G., Orenstein, J. M., Martin, M. A., &␣Craigie, R. (1995). Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. Journal of Virology, 69, 2729–2736.PubMedGoogle Scholar
  70. 70.
    Leavitt, A. D., Robles, G., Alesandro, N., & Varmus, H. E. (1996). Human immunodeficiency virus type 1 integrase mutants retain in␣vitro integrase activity yet fail to integrate viral DNA efficiently during infection. Journal of Virology, 70, 721–728.PubMedGoogle Scholar
  71. 71.
    Nakajima, N., Lu, R., & Engelman, A. (2001). Human immunodeficiency virus type 1 replication in the absence of integrase-mediated dna recombination: Definition of permissive and nonpermissive T-cell lines. Journal of Virology, 75, 7944–7955.PubMedGoogle Scholar
  72. 72.
    Saenz, D. T. et al. (2004). Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: Analysis with class I integrase mutants. Journal of Virology, 78, 2906–2920.PubMedGoogle Scholar
  73. 73.
    Nightingale, S. J. et al. (2006). Transient gene expression by nonintegrating lentiviral vectors. Molecular Therapy, 13, 1121–1132.PubMedGoogle Scholar
  74. 74.
    Loewen, N. et al. (2003). Comparison of wild-type and class I integrase mutant-FIV vectors in retina demonstrates sustained expression of integrated transgenes in retinal pigment epithelium. The Journal of Gene Medicine, 5, 1009–1017.PubMedGoogle Scholar
  75. 75.
    Vargas Jr., J., Gusella, G. L., Najfeld, V., Klotman, M. E., & Cara, A. (2004). Novel integrase-defective lentiviral episomal vectors for gene transfer. Human Gene Therapy, 15, 361–372.PubMedGoogle Scholar
  76. 76.
    Yanez-Munoz, R. J. et al. (2006). Effective gene therapy with nonintegrating lentiviral vectors. Nature Medicine, 12, 348–353.PubMedGoogle Scholar
  77. 77.
    Philippe, S. et al. (2006). Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in␣vitro and in␣vivo. Proceedings of the National Academy of Sciences of the USA, 103, 17684–17689.PubMedGoogle Scholar
  78. 78.
    Miyoshi, H., Blomer, U., Takahashi, M., Gage, F. H., & Verma, I. M. (1998). Development of a self-inactivating lentivirus vector. Journal of Virology, 72, 8150–8157.PubMedGoogle Scholar
  79. 79.
    Zufferey, R. et al. (1998). Self-inactivating lentivirus vector for safe and efficient in␣vivo gene delivery. Journal of Virology, 72, 9873–9880.PubMedGoogle Scholar
  80. 80.
    Iwakuma, T., Cui, Y., & Chang, L. J. (1999). Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology, 261, 120–132.PubMedGoogle Scholar
  81. 81.
    Yu, S. F. et al. (1986). Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proceedings of the National Academy of Sciences of the USA, 83, 3194–3198.PubMedGoogle Scholar
  82. 82.
    Evans, J. T., & Garcia, J. V. (2000). Lentivirus vector mobilization and spread by human immunodeficiency virus. Human Gene Therapy, 11, 2331–2339.PubMedGoogle Scholar
  83. 83.
    Bukovsky, A. A., Song, J. P., & Naldini, L. (1999). Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells. Journal of Virology, 73, 7087–7092.PubMedGoogle Scholar
  84. 84.
    Grunwald, T., Pedersen, F. S., Wagner, R., & Uberla, K. (2004). Reducing mobilization of simian immunodeficiency virus based vectors by primer complementation. The Journal of Gene Medicine, 6, 147–154.PubMedGoogle Scholar
  85. 85.
    Lucke, S., Grunwald, T., & Uberla, K. (2005). Reduced mobilization of Rev-responsive element-deficient lentiviral vectors. Journal of Virology, 79, 9359–9362.PubMedGoogle Scholar
  86. 86.
    Logan, A. C., Haas, D. L., Kafri, T., & Kohn, D. B. (2004). Integrated self-inactivating lentiviral vectors produce full-length genomic transcripts competent for encapsidation and integration. Journal of Virology, 78, 8421–8436.PubMedGoogle Scholar
  87. 87.
    Hanawa, H., Persons, D. A., & Nienhuis, A. W. (2005). Mobilization and mechanism of transcription of integrated self-inactivating lentiviral vectors. Journal of Virology, 79, 8410–8421.PubMedGoogle Scholar
  88. 88.
    Ma, H., & Kafri, T. (2004). A single-LTR HIV-1 vector optimized for functional genomics applications. Molecular Therapy, 10, 139–149.PubMedGoogle Scholar
  89. 89.
    Recillas-Targa, F., Valadez-Graham, V., & Farrell, C. M. (2004). Prospects and implications of using chromatin insulators in gene therapy and transgenesis. Bioessays, 26, 796–807.PubMedGoogle Scholar
  90. 90.
    Ramezani, A., Hawley, T. S., & Hawley, R. G. (2003). Performance- and safety-enhanced lentiviral vectors containing the human interferon-{beta} scaffold attachment region and the chicken {beta}-globin insulator. Blood, 101(12), 4717–4724.Google Scholar
  91. 91.
    Hino, S., Fan, J., Taguwa, S., Akasaka, K., & Matsuoka, M. (2004). Sea urchin insulator protects lentiviral vector from silencing by maintaining active chromatin structure. Gene Therapy, 11, 819–828.PubMedGoogle Scholar
  92. 92.
    Zufferey, R., Donello, J. E., Trono, D., & Hope, T. J. (1999). Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. Journal of Virology, 73, 2886–2892.PubMedGoogle Scholar
  93. 93.
    Kingsman, S. M., Mitrophanous, K., & Olsen, J. C. (2005). Potential oncogene activity of the woodchuck hepatitis post-transcriptional regulatory element (WPRE). Gene Therapy, 12, 3–4.PubMedGoogle Scholar
  94. 94.
    Schambach, A. et al. (2006). Woodchuck hepatitis virus post-transcriptional regulatory element deleted from X protein and promoter sequences enhances retroviral vector titer and expression. Gene Therapy, 13, 641–645.PubMedGoogle Scholar
  95. 95.
    Charneau, P., & Clavel, F. (1991). A single-stranded gap in human immunodeficiency virus unintegrated linear DNA defined by a central copy of the polypurine tract. Journal of Virology, 65, 2415–2421.PubMedGoogle Scholar
  96. 96.
    Charneau, P., Mirambeau, G., Roux, P., Paulous, S., Buc, H., & Clavel, F. (1994). HIV-1 reverse transcription. A termination step at the center of the genome. Journal of Molecular Biology, 241, 651–662.PubMedGoogle Scholar
  97. 97.
    Arhel, N., Munier, S., Souque, P., Mollier, K., & Charneau, P. (2006). Nuclear import defect of human immunodeficiency virus type 1 DNA flap mutants is not dependent on the viral strain or target cell type. Journal of Virology, 80, 10262–10269.PubMedGoogle Scholar
  98. 98.
    Arhel, N. J., Souquere-Besse, S., & Charneau, P. (2006). Wild-type and central DNA flap defective HIV-1 lentiviral vector genomes: Intracellular visualization at ultrastructural resolution levels. Retrovirology, 3, 38.PubMedGoogle Scholar
  99. 99.
    De Rijck, J., & Debyser, Z. (2006). The central DNA flap of the human immunodeficiency virus type 1 is important for viral replication. Biochemical and Biophysical Research Communications, 349, 1100–1110.PubMedGoogle Scholar
  100. 100.
    Zennou, V. et al. (2001). The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain. Nature Biotechnology, 19, 446–450.PubMedGoogle Scholar
  101. 101.
    Sirven, A. et al. (2000). The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood, 96, 4103–4110.PubMedGoogle Scholar
  102. 102.
    Sirven, A. et al. (2001). Enhanced transgene expression in cord blood CD34(+)-derived hematopoietic cells, including developing T cells and NOD/SCID mouse repopulating cells, following transduction with modified trip lentiviral vectors. Molecular Therapy, 3, 438–448.PubMedGoogle Scholar
  103. 103.
    Pfeifer, A. et al. (2001). Transduction of liver cells by lentiviral vectors: Analysis in living animals by fluorescence imaging. Molecular Therapy, 3, 319–322.PubMedGoogle Scholar
  104. 104.
    Follenzi, A., Ailles, L. E., Bakovic, S., Geuna, M., & Naldini, L. (2000). Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nature Genetics, 25, 217–222.PubMedGoogle Scholar
  105. 105.
    Dvorin, J. D., Bell, P., Maul, G. G., Yamashita, M., Emerman, M., & Malim, M. H. (2002). Reassessment of the roles of integrase and the central DNA flap in human immunodeficiency virus type 1 nuclear import. Journal of Virology, 76, 12087–12096.PubMedGoogle Scholar
  106. 106.
    Limon, A., Nakajima, N., Lu, R., Ghory, H. Z., & Engelman, A. (2002). Wild-type levels of nuclear localization and human immunodeficiency virus type 1 replication in the absence of the central DNA flap. Journal of Virology, 76, 12078–12086.PubMedGoogle Scholar
  107. 107.
    Van Maele, B., De Rijck, J., De Clercq, E., & Debyser, Z. (2003). Impact of the central polypurine tract on the kinetics of human immunodeficiency virus type 1 vector transduction. Journal of Virology, 77, 4685–4694.PubMedGoogle Scholar
  108. 108.
    Reiser, J., Lai, Z., Zhang, X. Y., & Brady, R. O. (2000). Development of multigene and regulated lentivirus vectors. Journal of Virology, 74, 10589–10599.PubMedGoogle Scholar
  109. 109.
    Kafri, T., van Praag, H., Gage, F. H., & Verma, I. M. (2000). Lentiviral vectors: Regulated gene expression. Molecular Therapy, 1, 516–521.PubMedGoogle Scholar
  110. 110.
    Galimi, F. et al. (2005). Development of ecdysone-regulated lentiviral vectors. Molecular Therapy, 11, 142–148.PubMedGoogle Scholar
  111. 111.
    Gossen, M., & Bujard, H. (1992). Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proceedings of the National Academy of Sciences of the USA, 89, 5547–5551.PubMedGoogle Scholar
  112. 112.
    Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., & Bujard, H. (1995). Transcriptional activation by tetracyclines in mammalian cells. Science, 268, 1766–1769.PubMedGoogle Scholar
  113. 113.
    Vigna, E. et al. (2002). Robust and efficient regulation of transgene expression in␣vivo by improved tetracycline-dependent lentiviral vectors. Molecular Therapy, 5, 252–261.PubMedGoogle Scholar
  114. 114.
    Koponen, J. K. et al. (2003). Doxycycline-regulated lentiviral vector system with a novel reverse transactivator rtTA2S-M2 shows a tight control of gene expression in␣vitro and in␣vivo. Gene Therapy, 10, 459–466.PubMedGoogle Scholar
  115. 115.
    Haack, K. et al. (2004). Transactivator and structurally optimized inducible lentiviral vectors. Molecular Therapy, 10, 585–596.PubMedGoogle Scholar
  116. 116.
    Xu, K., Ma, H., McCown, T. J., Verma, I. M., & Kafri, T. (2001). Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Molecular Therapy, 3, 97–104.PubMedGoogle Scholar
  117. 117.
    Amar, L., Desclaux, M., Faucon-Biguet, N., Mallet, J., & Vogel, R. (2006). Control of small inhibitory RNA levels and RNA interference by doxycycline induced activation of a minimal RNA polymerase III promoter. Nucleic Acids Research, 34, e37.PubMedGoogle Scholar
  118. 118.
    Pluta, K., Luce, M. J., Bao, L., Agha-Mohammadi, S., & Reiser, J. (2005). Tight control of transgene expression by lentivirus vectors containing second-generation tetracycline-responsive promoters. The Journal of Gene Medicine, 7, 803–817.PubMedGoogle Scholar
  119. 119.
    Urlinger, S., Baron, U., Thellmann, M., Hasan, M. T., Bujard, H., & Hillen, W. (2000). Exploring the sequence space for tetracycline-dependent transcriptional activators: Novel mutations yield expanded range and sensitivity. Proceedings of the National Academy of Sciences of the USA, 97, 7963–7968.PubMedGoogle Scholar
  120. 120.
    Vigna, E., Amendola, M., Benedicenti, F., Simmons, A. D., Follenzi, A., & Naldini, L. (2005). Efficient Tet-dependent expression of human factor IX in␣vivo by a new self-regulating lentiviral vector. Molecular Therapy, 11, 763–775.PubMedGoogle Scholar
  121. 121.
    Szulc, J., Wiznerowicz, M., Sauvain, M. O., Trono, D., & Aebischer, P. (2006). A versatile tool for conditional gene expression and knockdown. Nature Methods, 3, 109–116.PubMedGoogle Scholar
  122. 122.
    Agha-Mohammadi, S., O’Malley, M., Etemad, A., Wang, Z., Xiao, X., & Lotze, M. T. (2004). Second-generation tetracycline-regulatable promoter: Repositioned tet operator elements optimize transactivator synergy while shorter minimal promoter offers tight basal leakiness. Journal of Gene Medicine, 6, 817–828.PubMedGoogle Scholar
  123. 123.
    Stegmeier, F., Hu, G., Rickles, R. J., Hannon, G. J., & Elledge, S. J. (2005). A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proceedings of the National Academy of Sciences of the USA, 102, 13212–13217.PubMedGoogle Scholar
  124. 124.
    Wiznerowicz, M., & Trono, D. (2003). Conditional suppression of cellular genes: Lentivirus vector-mediated drug-inducible RNA interference. Journal of Virology, 77, 8957–8961.PubMedGoogle Scholar
  125. 125.
    Shin, K. J. et al. (2006). A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proceedings of the National Academy of Sciences of the USA, 103, 13759–13764.PubMedGoogle Scholar
  126. 126.
    Latta-Mahieu, M. et al. (2002). Gene transfer of a chimeric trans-activator is immunogenic and results in short-lived transgene expression. Human Gene Therapy, 13, 1611–1620.PubMedGoogle Scholar
  127. 127.
    Favre, D. et al. (2002). Lack of an immune response against the tetracycline-dependent transactivator correlates with long-term doxycycline-regulated transgene expression in nonhuman primates after intramuscular injection of recombinant adeno-associated virus. Journal of Virology, 76, 11605–11611.PubMedGoogle Scholar
  128. 128.
    Ginhoux, F. et al. (2004). HLA-A*0201-restricted cytolytic responses to the rtTA transactivator dominant and cryptic epitopes compromise transgene expression induced by the tetracycline on system. Molecular Therapy, 10, 279–289.PubMedGoogle Scholar
  129. 129.
    Lena, A. M., Giannetti, P., Sporeno, E., Ciliberto, G., & Savino, R. (2005). Immune responses against tetracycline-dependent transactivators affect long-term expression of mouse erythropoietin delivered by a helper-dependent adenoviral vector. The Journal of Gene Medicine, 7, 1086–1096.PubMedGoogle Scholar
  130. 130.
    Cockrell, A. S., Ma, H., Fu, K., McCown, T. J., & Kafri, T. (2006). A trans-lentiviral packaging cell line for high-titer conditional self-inactivating HIV-1 vectors. Molecular Therapy, 14, 276–284.PubMedGoogle Scholar
  131. 131.
    Karolewski, B. A., Watson, D. J., Parente, M. K., & Wolfe, J. H. (2003). Comparison of transfection conditions for a lentivirus vector produced in large volumes. Human Gene Therapy, 14, 1287–1296.PubMedGoogle Scholar
  132. 132.
    Segura, M. M., Kamen, A., & Garnier, A. (2006). Downstream processing of oncoretroviral and lentiviral gene therapy vectors. Biotechnology Advances, 24, 321–337.PubMedGoogle Scholar
  133. 133.
    Reiser, J. (2000). Production and concentration of pseudotyped HIV-1-based gene transfer vectors. Gene Therapy, 7, 910–913.PubMedGoogle Scholar
  134. 134.
    Baekelandt, V., Eggermont, K., Michiels, M., Nuttin, B., &␣Debyser, Z. (2003). Optimized lentiviral vector production and purification procedure prevents immune response after transduction of mouse brain. Gene Therapy, 10, 1933–1940.PubMedGoogle Scholar
  135. 135.
    Vogt, V. M. (1997). Retroviral virions and genomes. In J. M. Coffin, S. H. Hughes, & H. E. Varmus (Eds.), Retroviruses (p.␣28) Plainview NY: Cold Spring Harbor Laboratory Press.Google Scholar
  136. 136.
    Yu, J. H., & Schaffer, D. V. (2006). Selection of novel vesicular stomatitis virus glycoprotein variants from a peptide insertion library for enhanced purification of retroviral and lentiviral vectors. Journal of Virology, 80, 3285–3292.PubMedGoogle Scholar
  137. 137.
    Geraerts, M., Michiels, M., Baekelandt, V., Debyser, Z., &␣Gijsbers, R. (2005). Upscaling of lentiviral vector production by tangential flow filtration. Journal of Gene Medicine, 7, 1299–1310.PubMedGoogle Scholar
  138. 138.
    Delenda, C., & Gaillard, C. (2005). Real-time quantitative PCR for the design of lentiviral vector analytical assays. Gene Therapy, 12(Suppl 1), S36–S50.PubMedGoogle Scholar
  139. 139.
    Sastry, L., Johnson, T., Hobson, M. J., Smucker, B., & Cornetta, K. (2002). Titering lentiviral vectors: Comparison of DNA, RNA and marker expression methods. Gene Therapy, 9, 1155–1162.PubMedGoogle Scholar
  140. 140.
    Lizee, G., Aerts, J. L., Gonzales, M. I., Chinnasamy, N., Morgan, R. A., & Topalian, S. L. (2003). Real-time quantitative reverse transcriptase-polymerase chain reaction as a method for determining lentiviral vector titers and measuring transgene expression. Human Gene Therapy, 14, 497–507.PubMedGoogle Scholar
  141. 141.
    Geraerts, M., Willems, S., Baekelandt, V., Debyser, Z., & Gijsbers, R. (2006). Comparison of lentiviral vector titration methods. BMC Biotechnology, 6, 34.PubMedGoogle Scholar
  142. 142.
    Li, Y., Drone, C., Sat, E., & Ghosh, H. P. (1993). Mutational analysis of the vesicular stomatitis virus glycoprotein G for membrane fusion domains. Journal of Virology, 67, 4070–4077.PubMedGoogle Scholar
  143. 143.
    Konvalinka, J. et al. (1995). An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity. Journal of Virology, 69, 7180–7186.PubMedGoogle Scholar
  144. 144.
    Bartz, S. R., Rogel, M. E., & Emerman, M. (1996). Human immunodeficiency virus type 1 cell cycle control: Vpr is cytostatic and mediates G2 accumulation by a mechanism which differs from DNA damage checkpoint control. Journal of Virology, 70, 2324–2331.PubMedGoogle Scholar
  145. 145.
    Kaul, M., Yu, H., Ron, Y., & Dougherty, J. P. (1998). Regulated lentiviral packaging cell line devoid of most viral cis-acting sequences. Virology, 249, 167–174.PubMedGoogle Scholar
  146. 146.
    Kafri, T., van Praag, H., Ouyang, L., Gage, F. H., & Verma, I. M. (1999). A packaging cell line for lentivirus vectors. Journal of Virology, 73, 576–584.PubMedGoogle Scholar
  147. 147.
    Pacchia, A. L., Adelson, M. E., Kaul, M., Ron, Y., & Dougherty, J. P. (2001). An inducible packaging cell system for safe, efficient lentiviral vector production in the absence of HIV-1 accessory proteins. Virology, 282, 77–86.PubMedGoogle Scholar
  148. 148.
    Klages, N., Zufferey, R., & Trono, D. (2000). A stable system for the high-titer production of multiply attenuated lentiviral vectors. Molecular Therapy, 2, 170–176.PubMedGoogle Scholar
  149. 149.
    Farson, D. et al. (2001). A new-generation stable inducible packaging cell line for lentiviral vectors. Human Gene Therapy, 12, 981–997.PubMedGoogle Scholar
  150. 150.
    Ikeda, Y., Takeuchi, Y., Martin, F., Cosset, F. L., Mitrophanous, K., & Collins, M. (2003). Continuous high-titer HIV-1 vector production. Nature Biotechnology, 21, 569–572.PubMedGoogle Scholar
  151. 151.
    Ni, Y. et al. (2005). Generation of a packaging cell line for prolonged large-scale production of high-titer HIV-1-based lentiviral vector. Journal of Gene Medicine, 7, 818–834.PubMedGoogle Scholar
  152. 152.
    Strang, B. L., Ikeda, Y., Cosset, F. L., Collins, M. K., & Takeuchi, Y. (2004). Characterization of HIV-1 vectors with gammaretrovirus envelope glycoproteins produced from stable packaging cells. Gene Therapy, 11, 591–598.PubMedGoogle Scholar
  153. 153.
    Strang, B. L. et al. (2005). Human immunodeficiency virus type 1 vectors with alphavirus envelope glycoproteins produced from stable packaging cells. Journal of Virology, 79, 1765–1771.PubMedGoogle Scholar
  154. 154.
    Hansen, M. S., Smith, G. J. 3rd, Kafri, T., Molteni, V., Siegel, J. S., & Bushman, F. D. (1999). Integration complexes derived from HIV vectors for rapid assays in␣vitro. Nature Biotechnology, 17, 578–582.PubMedGoogle Scholar
  155. 155.
    Nyberg, K. et al. (2004). Workshop on long-term follow-up of participants in human gene transfer research. Molecular Therapy, 10, 976–980.PubMedGoogle Scholar
  156. 156.
    Escarpe, P. et al. (2003). Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Molecular Therapy, 8, 332–341.PubMedGoogle Scholar
  157. 157.
    Sastry, L. et al. (2003). Certification assays for HIV-1-based vectors: Frequent passage of gag sequences without evidence of replication-competent viruses. Molecular Therapy, 8, 830–839.PubMedGoogle Scholar
  158. 158.
    Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J., &␣Conklin, D. S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Development, 16, 948–958.PubMedGoogle Scholar
  159. 159.
    Paul, C. P., Good, P. D., Winer, I., & Engelke, D. R. (2002). Effective expression of small interfering RNA in human cells. Nature Biotechnology, 20, 505–508.PubMedGoogle Scholar
  160. 160.
    Brummelkamp, T. R., Bernards, R., & Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science, 296, 550–553.PubMedGoogle Scholar
  161. 161.
    Xia, H., Mao, Q., Paulson, H. L., & Davidson, B. L. (2002). siRNA-mediated gene silencing in␣vitro and in␣vivo. Nature Biotechnology, 20, 1006–1010.PubMedGoogle Scholar
  162. 162.
    Du, T., & Zamore, P. D. (2005). microPrimer: The biogenesis and function of microRNA. Development, 132, 4645–4652.PubMedGoogle Scholar
  163. 163.
    Brummelkamp, T. R., Bernards, R., & Agami, R. (2002). Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell, 2, 243–247.PubMedGoogle Scholar
  164. 164.
    Abbas-Terki, T., Blanco-Bose, W., Deglon, N., Pralong, W., &␣Aebischer, P. (2002). Lentiviral-mediated RNA interference. Human Gene Therapy, 13, 2197–2201.PubMedGoogle Scholar
  165. 165.
    Qin, X. F., An, D. S., Chen, I. S., & Baltimore, D. (2003). Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proceedings of the National Academy of Sciences of the USA, 100, 183–188.PubMedGoogle Scholar
  166. 166.
    Tiscornia, G., Singer, O., Ikawa, M., & Verma, I. M. (2003). A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proceedings of the National Academy of Sciences of the USA, 100, 1844–1848.PubMedGoogle Scholar
  167. 167.
    Rubinson, D. A. et al. (2003). A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genetics, 33, 401–406.PubMedGoogle Scholar
  168. 168.
    Raoul, C. et al. (2005). Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nature Medicine, 11, 423–428.PubMedGoogle Scholar
  169. 169.
    Ralph, G. S. et al. (2005). Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nature Medicine, 11, 429–433.PubMedGoogle Scholar
  170. 170.
    Singer, O. et al. (2005). Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nature Neuroscience, 8, 1343–1349.PubMedGoogle Scholar
  171. 171.
    Morris, K. V., & Rossi, J. J. (2006). Lentiviral-mediated delivery of siRNAs for antiviral therapy. Gene Therapy, 13, 553–558.PubMedGoogle Scholar
  172. 172.
    Tiscornia, G., Tergaonkar, V., Galimi, F., & Verma, I. M. (2004). CRE recombinase-inducible RNA interference mediated by lentiviral vectors. Proceedings of the National Academy of Sciences of the USA, 101, 7347–7351.PubMedGoogle Scholar
  173. 173.
    Ventura, A. et al. (2004). Cre-lox-regulated conditional RNA interference from transgenes. Proceedings of the National Academy of Sciences of the USA, 101, 10380–10385.PubMedGoogle Scholar
  174. 174.
    Zeng, Y., Cai, X., & Cullen, B. R. (2005). Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymology, 392, 371–380.Google Scholar
  175. 175.
    Dickins, R. A. et al. (2005). Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nauture Genetics, 37, 1289–1295.Google Scholar
  176. 176.
    Berns, K. et al. (2004). A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature, 428, 431–437.PubMedGoogle Scholar
  177. 177.
    Paddison, P. J. et al. (2004). A resource for large-scale RNA-interference-based screens in mammals. Nature, 428, 427–431.PubMedGoogle Scholar
  178. 178.
    Moffat, J. et al. (2006). A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell, 124, 1283–1298.PubMedGoogle Scholar
  179. 179.
    Root, D. E., Hacohen, N., Hahn, W. C., Lander, E. S., &␣Sabatini, D. M. (2006). Genome-scale loss-of-function screening with a lentiviral RNAi library. Nature Methods, 3, 715–719.PubMedGoogle Scholar
  180. 180.
    Silva, J. M. et al. (2005). Second-generation shRNA libraries covering the mouse and human genomes. Nature Genetics, 37, 1281–1288.PubMedGoogle Scholar
  181. 181.
    Pfeifer, A., Ikawa, M., Dayn, Y., & Verma, I. M. (2002). Transgenesis by lentiviral vectors: Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proceedings of the National Academy of Sciences of the USA, 99, 2140–2145.PubMedGoogle Scholar
  182. 182.
    Lois, C., Hong, E. J., Pease, S., Brown, E. J., & Baltimore, D. (2002). Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science, 295, 868–872.PubMedGoogle Scholar
  183. 183.
    Hamra, F. K. et al. (2002). Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proceedings of the National Academy of Sciences of the USA, 99, 14931–14936.PubMedGoogle Scholar
  184. 184.
    Hofmann, A. et al. (2003). Efficient transgenesis in farm animals by lentiviral vectors. EMBO Reports, 4, 1054–1060.PubMedGoogle Scholar
  185. 185.
    Whitelaw, C. B. et al. (2004). Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector. FEBS Letters, 571, 233–236.PubMedGoogle Scholar
  186. 186.
    Hofmann, A. et al. (2004). Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biology of Reproduction, 71, 405–409.PubMedGoogle Scholar
  187. 187.
    Scott, B. B., & Lois, C. (2005). Generation of tissue-specific transgenic birds with lentiviral vectors. Proceedings of the National Academy of Sciences of the USA, 102, 16443–16447.PubMedGoogle Scholar
  188. 188.
    McGrew, M. J. et al. (2004). Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Reports, 5, 728–733.PubMedGoogle Scholar
  189. 189.
    Ralph, G. S., Binley, K., Wong, L. F., Azzouz, M., & Mazarakis, N. D. (2006). Gene therapy for neurodegenerative and ocular diseases using lentiviral vectors. Clinical Science (London), 110, 37–46.Google Scholar
  190. 190.
    Wong, L. F., Goodhead, L., Prat, C., Mitrophanous, K. A., Kingsman, S. M., & Mazarakis, N. D. (2006). Lentivirus-mediated gene transfer to the central nervous system: Therapeutic and research applications. Human Gene Therapy, 17, 1–9.PubMedGoogle Scholar
  191. 191.
    Miyoshi, H., Takahashi, M., Gage, F. H., & Verma, I. M. (1997). Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proceedings of the National Academy of Sciences of the USA, 94, 10319–10323.PubMedGoogle Scholar
  192. 192.
    Tschernutter, M. et al. (2005). Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy. Gene Therapy, 12, 694–701.PubMedGoogle Scholar
  193. 193.
    Bemelmans, A. P. et al. (2006). Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis. PLoS Medicine, 3, e347.PubMedGoogle Scholar
  194. 194.
    Chang, A. H., & Sadelain, M. (2007). The genetic engineering of Hematopoietic stem cells: The rise of lentiviral vectors, the conundrum of the LTR, and the promise of lineage-restricted vectors. Molecular Therapy, 15(3), 445–456.Google Scholar
  195. 195.
    Miyoshi, H., Smith, K. A., Mosier, D. E., Verma, I. M., & Torbett, B. E. (1999). Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science, 283, 682–686.PubMedGoogle Scholar
  196. 196.
    May, C. et al. (2000). Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature, 406, 82–86.PubMedGoogle Scholar
  197. 197.
    Pawliuk, R. et al. (2001). Correction of sickle cell disease in transgenic mouse models by gene therapy. Science, 294, 2368–2371.PubMedGoogle Scholar
  198. 198.
    Imren, S. et al. (2002). Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proceedings of the National Academy of Sciences of the USA, 99, 14380–14385.PubMedGoogle Scholar
  199. 199.
    Rivella, S., May, C., Chadburn, A., Riviere, I., & Sadelain, M. (2003). A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human beta -globin gene transfer. Blood, 101, 2932–2939.PubMedGoogle Scholar
  200. 200.
    Levasseur, D. N., Ryan, T. M., Pawlik, K. M., & Townes, T. M. (2003). Correction of a mouse model of sickle cell disease: Lentiviral/antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood, 102, 4312–4319.PubMedGoogle Scholar
  201. 201.
    Puthenveetil, G. et al. (2004). Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. Blood, 104, 3445–3453.PubMedGoogle Scholar
  202. 202.
    Malik, P., Arumugam, P. I., Yee, J. K., & Puthenveetil, G. (2005). Successful correction of the human Cooley’s anemia beta-thalassemia major phenotype using a lentiviral vector flanked by the chicken hypersensitive site 4 chromatin insulator. Annals of the New York Academy of Sciences, 1054, 238–249.PubMedGoogle Scholar
  203. 203.
    Mostoslavsky, G., Fabian, A. J., Rooney, S., Alt, F. W., & Mulligan, R. C. (2006). Complete correction of murine Artemis immunodeficiency by lentiviral vector-mediated gene transfer. Proceedings of the National Academy of Sciences of the USA, 103, 16406–16411.PubMedGoogle Scholar
  204. 204.
    Levine, B. L. et al. (2006). Gene transfer in humans using a conditionally replicating lentiviral vector. Proceedings of the National Academy of Sciences of the USA, 103, 17372–17377.PubMedGoogle Scholar
  205. 205.
    Bank, A., Dorazio, R., & Leboulch, P. (2005). A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia. Annals of the New York Academy of Sciences, 1054, 308–316.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Gene Therapy CenterUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations